CONUS404 Temporal Aggregation#

Create daily averages from hourly data, write to a zarr dataset

import fsspec
import xarray as xr
import hvplot.xarray
import intake
import os
import warnings
from dask.distributed import LocalCluster, Client
warnings.filterwarnings('ignore')

Open dataset from Intake Catalog#

  • Select on-prem dataset from /caldera if running on prem (Denali/Tallgrass)

  • Select cloud/osn object store data if running elsewhere

# open the hytest data intake catalog
hytest_cat = intake.open_catalog("https://raw.githubusercontent.com/hytest-org/hytest/main/dataset_catalog/hytest_intake_catalog.yml")
list(hytest_cat)
['conus404-catalog',
 'benchmarks-catalog',
 'conus404-drb-eval-tutorial-catalog',
 'nhm-v1.0-daymet-catalog',
 'nhm-v1.1-c404-bc-catalog',
 'nhm-v1.1-gridmet-catalog',
 'trends-and-drivers-catalog',
 'nhm-prms-v1.1-gridmet-format-testing-catalog',
 'nwis-streamflow-usgs-gages-onprem',
 'nwis-streamflow-usgs-gages-osn',
 'nwm21-streamflow-usgs-gages-onprem',
 'nwm21-streamflow-usgs-gages-osn',
 'nwm21-streamflow-cloud',
 'geofabric_v1_1-zip-osn',
 'geofabric_v1_1_POIs_v1_1-osn',
 'geofabric_v1_1_TBtoGFv1_POIs-osn',
 'geofabric_v1_1_nhru_v1_1-osn',
 'geofabric_v1_1_nhru_v1_1_simp-osn',
 'geofabric_v1_1_nsegment_v1_1-osn',
 'gages2_nndar-osn',
 'wbd-zip-osn',
 'huc12-geoparquet-osn',
 'huc12-gpkg-osn',
 'nwm21-scores',
 'lcmap-cloud',
 'rechunking-tutorial-osn',
 'pointsample-tutorial-sites-osn',
 'pointsample-tutorial-output-osn']
# open the conus404 sub-catalog
cat = hytest_cat['conus404-catalog']
list(cat)
['conus404-hourly-onprem-hw',
 'conus404-hourly-cloud',
 'conus404-hourly-osn',
 'conus404-daily-diagnostic-onprem-hw',
 'conus404-daily-diagnostic-cloud',
 'conus404-daily-diagnostic-osn',
 'conus404-daily-onprem-hw',
 'conus404-daily-cloud',
 'conus404-daily-osn',
 'conus404-monthly-onprem-hw',
 'conus404-monthly-cloud',
 'conus404-monthly-osn',
 'conus404-hourly-ba-onprem-hw',
 'conus404-hourly-ba-osn',
 'conus404-daily-ba-onprem',
 'conus404-daily-ba-osn',
 'conus404-pgw-hourly-onprem-hw',
 'conus404-pgw-hourly-osn',
 'conus404-pgw-daily-diagnostic-onprem-hw',
 'conus404-pgw-daily-diagnostic-osn']
## Select the dataset you want to read into your notebook and preview its metadata
dataset = 'conus404-hourly-osn' 
cat[dataset]
conus404-hourly-osn:
  args:
    consolidated: true
    storage_options:
      anon: true
      client_kwargs:
        endpoint_url: https://usgs.osn.mghpcc.org/
      requester_pays: false
    urlpath: s3://hytest/conus404/conus404_hourly.zarr
  description: "CONUS404 Hydro Variable subset, hourly values. These files were created\
    \ wrfout model output files (see ScienceBase data release for more details: https://doi.org/10.5066/P9PHPK4F).\
    \ This data is stored on HyTEST\u2019s Open Storage Network (OSN) pod. This data\
    \ can be read with the S3 API and is free to work with in any computing environment\
    \ (there are no egress fees)."
  driver: intake_xarray.xzarr.ZarrSource
  metadata:
    catalog_dir: https://raw.githubusercontent.com/hytest-org/hytest/main/dataset_catalog/subcatalogs

2) Set Up AWS Credentials (Optional)#

This notebook reads data from the OSN pod by default, which is object store data on a high speed internet connection that is free to access from any environment. If you change this notebook to use one of the CONUS404 datasets stored on S3 (options ending in -cloud), you will be pulling data from a requester-pays S3 bucket. This means you have to set up your AWS credentials, else we won’t be able to load the data. Please note that reading the -cloud data from S3 may incur charges if you are reading data outside of the us-west-2 region or running the notebook outside of the cloud altogether. If you would like to access one of the -cloud options, uncomment and run the following code snippet to set up your AWS credentials. You can find more info about this AWS helper function here.

# uncomment the lines below to read in your AWS credentials if you want to access data from a requester-pays bucket (-cloud)
# os.environ['AWS_PROFILE'] = 'default'
# %run ../environment_set_up/Help_AWS_Credentials.ipynb

Parallelize with Dask#

Some of the steps we will take are aware of parallel clustered compute environments using dask. We’re going to start a cluster now so that future steps can take advantage of this ability.

This is an optional step, but speed ups data loading significantly, especially when accessing data from the cloud.

We have documentation on how to start a Dask Cluster in different computing environments here.

%run ../environment_set_up/Start_Dask_Cluster_Nebari.ipynb
## If this notebook is not being run on Nebari/ESIP, replace the above 
## path name with a helper appropriate to your compute environment.  Examples:
# %run ../environment_set_up/Start_Dask_Cluster_Denali.ipynb
# %run ../environment_set_up/Start_Dask_Cluster_Tallgrass.ipynb
# %run ../environment_set_up/Start_Dask_Cluster_Desktop.ipynb
# %run ../environment_set_up/Start_Dask_Cluster_PangeoCHS.ipynb
The 'cluster' object can be used to adjust cluster behavior.  i.e. 'cluster.adapt(minimum=10)'
The 'client' object can be used to directly interact with the cluster.  i.e. 'client.submit(func)' 
The link to view the client dashboard is:
>  https://hytestnebari.dev-wma.chs.usgs.gov/gateway/clusters/dev.d65836f2007a4b87b30bfd7b640a2e7f/status

Explore the dataset#

ds = cat[dataset].to_dask()
ds
<xarray.Dataset> Size: 222TB
Dimensions:         (time: 376945, y: 1015, x: 1367, bottom_top_stag: 51,
                     bottom_top: 50, soil_layers_stag: 4, x_stag: 1368,
                     y_stag: 1016, snow_layers_stag: 3, snso_layers_stag: 7)
Coordinates:
    lat             (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
    lat_u           (y, x_stag) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
    lat_v           (y_stag, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
    lon             (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
    lon_u           (y, x_stag) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
    lon_v           (y_stag, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
  * time            (time) datetime64[ns] 3MB 1979-10-01 ... 2022-10-01
  * x               (x) float64 11kB -2.732e+06 -2.728e+06 ... 2.732e+06
  * y               (y) float64 8kB -2.028e+06 -2.024e+06 ... 2.028e+06
Dimensions without coordinates: bottom_top_stag, bottom_top, soil_layers_stag,
                                x_stag, y_stag, snow_layers_stag,
                                snso_layers_stag
Data variables: (12/153)
    ACDEWC          (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
    ACDRIPR         (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
    ACDRIPS         (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
    ACECAN          (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
    ACEDIR          (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
    ACETLSM         (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
    ...              ...
    ZNU             (bottom_top) float32 200B dask.array<chunksize=(50,), meta=np.ndarray>
    ZNW             (bottom_top_stag) float32 204B dask.array<chunksize=(51,), meta=np.ndarray>
    ZS              (soil_layers_stag) float32 16B dask.array<chunksize=(4,), meta=np.ndarray>
    ZSNSO           (time, snso_layers_stag, y, x) float32 15TB dask.array<chunksize=(144, 7, 175, 175), meta=np.ndarray>
    ZWT             (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
    crs             int64 8B ...
Attributes: (12/148)
    AER_ANGEXP_OPT:                  1
    AER_ANGEXP_VAL:                  1.2999999523162842
    AER_AOD550_OPT:                  1
    AER_AOD550_VAL:                  0.11999999731779099
    AER_ASY_OPT:                     1
    AER_ASY_VAL:                     0.8999999761581421
    ...                              ...
    WEST-EAST_PATCH_START_STAG:      1
    WEST-EAST_PATCH_START_UNSTAG:    1
    W_DAMPING:                       1
    YSU_TOPDOWN_PBLMIX:              0
    history:                         Tue Mar 29 16:35:22 2022: ncrcat -A -vW ...
    history_of_appended_files:       Tue Mar 29 16:35:22 2022: Appended file ...
ds.T2
<xarray.DataArray 'T2' (time: 376945, y: 1015, x: 1367)> Size: 2TB
dask.array<open_dataset-T2, shape=(376945, 1015, 1367), dtype=float32, chunksize=(144, 175, 175), chunktype=numpy.ndarray>
Coordinates:
    lat      (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
    lon      (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
  * time     (time) datetime64[ns] 3MB 1979-10-01 ... 2022-10-01
  * x        (x) float64 11kB -2.732e+06 -2.728e+06 ... 2.728e+06 2.732e+06
  * y        (y) float64 8kB -2.028e+06 -2.024e+06 ... 2.024e+06 2.028e+06
Attributes:
    description:   TEMP at 2 M
    grid_mapping:  crs
    long_name:     Temperature at 2 meters
    units:         K

Daily averages#

Time averages of any type are easy to do with xarray. Here we do 24 hour averages, and set the time offset to 12 hours, so that the time values are in the middle of the averaging period.

Digital Earth Africa has a great Working with Time in Xarray tutorial.

In the example below we just do a few days with a few variables as a quick demo.

%%time
ds_subset = ds[['T2','U10']].sel(time=slice('2017-01-02','2017-01-13'))
CPU times: user 14.1 ms, sys: 4.23 ms, total: 18.3 ms
Wall time: 17.7 ms
ds_subset_daily = ds_subset.resample(time="24H", offset="12h", label='right').mean()
ds_subset_daily
<xarray.Dataset> Size: 155MB
Dimensions:  (time: 13, y: 1015, x: 1367)
Coordinates:
    lat      (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
    lon      (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
  * x        (x) float64 11kB -2.732e+06 -2.728e+06 ... 2.728e+06 2.732e+06
  * y        (y) float64 8kB -2.028e+06 -2.024e+06 ... 2.024e+06 2.028e+06
  * time     (time) datetime64[ns] 104B 2017-01-02T12:00:00 ... 2017-01-14T12...
Data variables:
    T2       (time, y, x) float32 72MB dask.array<chunksize=(13, 175, 175), meta=np.ndarray>
    U10      (time, y, x) float32 72MB dask.array<chunksize=(13, 175, 175), meta=np.ndarray>
Attributes: (12/148)
    AER_ANGEXP_OPT:                  1
    AER_ANGEXP_VAL:                  1.2999999523162842
    AER_AOD550_OPT:                  1
    AER_AOD550_VAL:                  0.11999999731779099
    AER_ASY_OPT:                     1
    AER_ASY_VAL:                     0.8999999761581421
    ...                              ...
    WEST-EAST_PATCH_START_STAG:      1
    WEST-EAST_PATCH_START_UNSTAG:    1
    W_DAMPING:                       1
    YSU_TOPDOWN_PBLMIX:              0
    history:                         Tue Mar 29 16:35:22 2022: ncrcat -A -vW ...
    history_of_appended_files:       Tue Mar 29 16:35:22 2022: Appended file ...
ds_subset_daily.hvplot.quadmesh(x='lon', y='lat', rasterize=True, 
                             geo=True, tiles='OSM', alpha=0.7, cmap='turbo')

Write daily values as a Zarr dataset (to onprem or cloud)#

You will need to to turn the following cell from raw to code and update the filepaths in order to save out your data.

Shutdown cluster#

client.close(); cluster.shutdown()