Explore CONUS404 Dataset#
This dataset was created by extracting specified variables from a collection of wrf2d output files, rechunking to better facilitate data extraction for a variety of use cases, and adding CF conventions to allow easier analysis, visualization and data extraction using Xarray and Holoviz.
import os
os.environ['USE_PYGEOS'] = '0'
import fsspec
import xarray as xr
import hvplot.xarray
import intake
import metpy
import cartopy.crs as ccrs
1) Select the Dataset from HyTEST’s Intake Catalog#
# open the hytest data intake catalog
hytest_cat = intake.open_catalog("https://raw.githubusercontent.com/hytest-org/hytest/main/dataset_catalog/hytest_intake_catalog.yml")
list(hytest_cat)
['conus404-catalog',
'benchmarks-catalog',
'conus404-drb-eval-tutorial-catalog',
'nhm-v1.0-daymet-catalog',
'nhm-v1.1-c404-bc-catalog',
'nhm-v1.1-gridmet-catalog',
'trends-and-drivers-catalog',
'nhm-prms-v1.1-gridmet-format-testing-catalog',
'nwis-streamflow-usgs-gages-onprem',
'nwis-streamflow-usgs-gages-osn',
'nwm21-streamflow-usgs-gages-onprem',
'nwm21-streamflow-usgs-gages-osn',
'nwm21-streamflow-cloud',
'geofabric_v1_1-zip-osn',
'geofabric_v1_1_POIs_v1_1-osn',
'geofabric_v1_1_TBtoGFv1_POIs-osn',
'geofabric_v1_1_nhru_v1_1-osn',
'geofabric_v1_1_nhru_v1_1_simp-osn',
'geofabric_v1_1_nsegment_v1_1-osn',
'gages2_nndar-osn',
'wbd-zip-osn',
'huc12-geoparquet-osn',
'huc12-gpkg-osn',
'nwm21-scores',
'lcmap-cloud',
'rechunking-tutorial-osn',
'pointsample-tutorial-sites-osn',
'pointsample-tutorial-output-osn']
# open the conus404 sub-catalog
cat = hytest_cat['conus404-catalog']
list(cat)
['conus404-hourly-onprem-hw',
'conus404-hourly-cloud',
'conus404-hourly-osn',
'conus404-daily-diagnostic-onprem-hw',
'conus404-daily-diagnostic-cloud',
'conus404-daily-diagnostic-osn',
'conus404-daily-onprem-hw',
'conus404-daily-cloud',
'conus404-daily-osn',
'conus404-monthly-onprem-hw',
'conus404-monthly-cloud',
'conus404-monthly-osn',
'conus404-hourly-ba-onprem-hw',
'conus404-hourly-ba-osn',
'conus404-daily-ba-onprem',
'conus404-daily-ba-osn',
'conus404-pgw-hourly-onprem-hw',
'conus404-pgw-hourly-osn',
'conus404-pgw-daily-diagnostic-onprem-hw',
'conus404-pgw-daily-diagnostic-osn']
Select a dataset: If you are unsure of which copy of a particular dataset to use (e.g. conus404-hourly-?
), please review the HyTEST JupyterBook
## Select the dataset you want to read into your notebook and preview its metadata
dataset = 'conus404-hourly-osn'
cat[dataset]
conus404-hourly-osn:
args:
consolidated: true
storage_options:
anon: true
client_kwargs:
endpoint_url: https://usgs.osn.mghpcc.org/
requester_pays: false
urlpath: s3://hytest/conus404/conus404_hourly.zarr
description: "CONUS404 Hydro Variable subset, hourly values. These files were created\
\ wrfout model output files (see ScienceBase data release for more details: https://doi.org/10.5066/P9PHPK4F).\
\ This data is stored on HyTEST\u2019s Open Storage Network (OSN) pod. This data\
\ can be read with the S3 API and is free to work with in any computing environment\
\ (there are no egress fees)."
driver: intake_xarray.xzarr.ZarrSource
metadata:
catalog_dir: https://raw.githubusercontent.com/hytest-org/hytest/main/dataset_catalog/subcatalogs
2) Set Up AWS Credentials (Optional)#
This notebook reads data from the OSN pod. The OSN pod is object store data on a high speed internet connection with free access from any computing environment. If you change this notebook to use one of the CONUS404 datasets stored on S3 (options ending in -cloud
), you will be pulling data from a requester-pays
S3 bucket. This means you have to set up your AWS credentials before you are able to load the data. Please note that reading the -cloud
data from S3 may incur charges if you are reading data outside of AWS’s us-west-2
region or running the notebook outside of the cloud altogether. If you would like to access one of the -cloud
options, uncomment and run the following code snippet to set up your AWS credentials. You can find more info about this AWS helper function here.
# uncomment the lines below to read in your AWS credentials if you want to access data from a requester-pays bucket (-cloud)
# os.environ['AWS_PROFILE'] = 'default'
# %run ../environment_set_up/Help_AWS_Credentials.ipynb
3) Parallelize with Dask (Optional, but recommended)#
Some of the steps we will take are aware of parallel clustered compute environments
using dask
. We will start a cluster so that future steps can take advantage
of this ability.
This is an optional step, but speed ups data loading significantly, especially when accessing data from the cloud.
We have documentation on how to start a Dask Cluster in different computing environments here.
#%run ../environment_set_up/Start_Dask_Cluster_Nebari.ipynb
## If this notebook is not being run on Nebari/ESIP, replace the above
## path name with a helper appropriate to your compute environment. Examples:
# %run ../environment_set_up/Start_Dask_Cluster_Denali.ipynb
# %run ../environment_set_up/Start_Dask_Cluster_Tallgrass.ipynb
# %run ../environment_set_up/Start_Dask_Cluster_Desktop.ipynb
# %run ../environment_set_up/Start_Dask_Cluster_PangeoCHS.ipynb
4) Explore the dataset#
# read in the dataset and use metpy to parse the crs information on the dataset
print(f"Reading {dataset} metadata...", end='')
ds = cat[dataset].to_dask().metpy.parse_cf()
ds
Reading conus404-hourly-osn metadata...
/home/conda/global/16102bfe-1731002172-4-pangeo/lib/python3.11/site-packages/intake_xarray/base.py:21: FutureWarning: The return type of `Dataset.dims` will be changed to return a set of dimension names in future, in order to be more consistent with `DataArray.dims`. To access a mapping from dimension names to lengths, please use `Dataset.sizes`.
'dims': dict(self._ds.dims),
<xarray.Dataset> Size: 222TB Dimensions: (y: 1015, x: 1367, time: 376945, bottom_top_stag: 51, bottom_top: 50, soil_layers_stag: 4, x_stag: 1368, y_stag: 1016, snow_layers_stag: 3, snso_layers_stag: 7) Coordinates: lat (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray> lon (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray> * time (time) datetime64[ns] 3MB 1979-10-01 ... 2022-10-01 * x (x) float64 11kB -2.732e+06 -2.728e+06 ... 2.732e+06 * y (y) float64 8kB -2.028e+06 -2.024e+06 ... 2.028e+06 metpy_crs object 8B Projection: lambert_conformal_conic lat_u (y, x_stag) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray> lon_u (y, x_stag) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray> lat_v (y_stag, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray> lon_v (y_stag, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray> Dimensions without coordinates: bottom_top_stag, bottom_top, soil_layers_stag, x_stag, y_stag, snow_layers_stag, snso_layers_stag Data variables: (12/153) ACDEWC (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray> ACDRIPR (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray> ACDRIPS (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray> ACECAN (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray> ACEDIR (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray> ACETLSM (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray> ... ... ZNU (bottom_top) float32 200B dask.array<chunksize=(50,), meta=np.ndarray> ZNW (bottom_top_stag) float32 204B dask.array<chunksize=(51,), meta=np.ndarray> ZS (soil_layers_stag) float32 16B dask.array<chunksize=(4,), meta=np.ndarray> ZSNSO (time, snso_layers_stag, y, x) float32 15TB dask.array<chunksize=(144, 7, 175, 175), meta=np.ndarray> ZWT (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray> crs int64 8B ... Attributes: (12/148) AER_ANGEXP_OPT: 1 AER_ANGEXP_VAL: 1.2999999523162842 AER_AOD550_OPT: 1 AER_AOD550_VAL: 0.11999999731779099 AER_ASY_OPT: 1 AER_ASY_VAL: 0.8999999761581421 ... ... WEST-EAST_PATCH_START_STAG: 1 WEST-EAST_PATCH_START_UNSTAG: 1 W_DAMPING: 1 YSU_TOPDOWN_PBLMIX: 0 history: Tue Mar 29 16:35:22 2022: ncrcat -A -vW ... history_of_appended_files: Tue Mar 29 16:35:22 2022: Appended file ...
- y: 1015
- x: 1367
- time: 376945
- bottom_top_stag: 51
- bottom_top: 50
- soil_layers_stag: 4
- x_stag: 1368
- y_stag: 1016
- snow_layers_stag: 3
- snso_layers_stag: 7
- lat(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 317 graph layers Data type float32 numpy.ndarray - lon(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 317 graph layers Data type float32 numpy.ndarray - time(time)datetime64[ns]1979-10-01 ... 2022-10-01
- axis :
- T
- description :
- minutes since 1979-10-01 00:00:00
- long_name :
- Minutes since 1979-10-01 00:00:00
- standard_name :
- time
array(['1979-10-01T00:00:00.000000000', '1979-10-01T01:00:00.000000000', '1979-10-01T02:00:00.000000000', ..., '2022-09-30T22:00:00.000000000', '2022-09-30T23:00:00.000000000', '2022-10-01T00:00:00.000000000'], dtype='datetime64[ns]')
- x(x)float64-2.732e+06 -2.728e+06 ... 2.732e+06
- long_name :
- x coordinate of projection
- standard_name :
- projection_x_coordinate
- units :
- meters
array([-2732000., -2728000., -2724000., ..., 2724000., 2728000., 2732000.])
- y(y)float64-2.028e+06 -2.024e+06 ... 2.028e+06
- long_name :
- y coordinate of projection
- standard_name :
- projection_y_coordinate
- units :
- meters
array([-2028000., -2024000., -2020000., ..., 2020000., 2024000., 2028000.])
- metpy_crs()objectProjection: lambert_conformal_conic
array(<metpy.plots.mapping.CFProjection object at 0x7f19cfc01a10>, dtype=object)
- lat_u(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 11 graph layers Data type float32 numpy.ndarray - lon_u(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 11 graph layers Data type float32 numpy.ndarray - lat_v(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 14 graph layers Data type float32 numpy.ndarray - lon_v(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 14 graph layers Data type float32 numpy.ndarray
- ACDEWC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QDEWC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy dew rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACDRIPR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QDRIPR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy precipitation drip rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACDRIPS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QDRIPS
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow drip rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACECAN(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated ECAN
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated net evaporation of canopy water (evap + sublim - dew - frost)
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEDIR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated EDIR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated net soil evaporation or snowpack sublimation (evap or sublim - dew or frost)
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACETLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated ET
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated total evaporation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACETRAN(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated ETRAN
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated plant transpiration
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVAC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QEVAC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy evaporation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated EVB
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated latent heat flux over bare ground
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated EVC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated latent heat flux for canopy layer
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVG(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated EVG
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated ground latent heat flux below canopy
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACFROC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QFROC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy frost
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACFRZC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QFRZC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated refreezing of canopy liquid water
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACGHB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated GHB
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated heat flux into soil or snowpack for bare ground
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACGHFLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated total ground heat flux
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated total ground heat flux into soil or snowpack
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACGHV(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated GHV
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated heat flux into soil or snowpack under canopy
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACINTR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QINTR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy rain interception rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACINTS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QINTS
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow interception rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACLHFLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated total latent heat flux
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated total latent heat flux
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACLWDNB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED DOWNWELLING LONGWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated downwelling longwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACLWUPB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED UPWELLING LONGWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated upwelling longwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACMELTC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QMELTC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow melt
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACPONDING(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated PONDING
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated surface ponding from complete pack melt
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACQLAT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- accumulated lateral flow
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated groundwater lateral flow
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACQRF(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- accumulated baseflow
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated groundwater baseflow
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRAINLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated RAINLSM
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated liquid precipitation into land surface model
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRAINSNOW(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated rain on snow pack
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated rain on snow pack
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRUNSB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated RUNSB
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated subsurface runoff
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRUNSF(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated RUNSF
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated surface runoff
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSHFLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated total sensible heat flux
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated total sensible heat flux
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNBOT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QSNBOT
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated liquid water flux out of bottom of snowpack
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNFRO(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QSNFRO
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated snowpack frost
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNOM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED MELTED SNOW
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated total liquid water out of the snowpack
- units :
- kg m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNOWLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated SNOWLSM
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated frozen precipitation into land surface model
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNSUB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QSNSUB
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated snowpack sublimation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSUBC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QSUBC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow sublimation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWDNB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED DOWNWELLING SHORTWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated downwelling shortwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWDNLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated SWDN
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated shortwave radiation down at land surface model
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWDNT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED DOWNWELLING SHORTWAVE FLUX AT TOP
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated downwelling shortwave radiation flux at top
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWUPB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED UPWELLING SHORTWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated upwelling shortwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWUPLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated SWUP
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated shortwave radiation up at land surface model
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACTHROR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QTHROR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy rain throughfall
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACTHROS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QTHROS
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow throughfall
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACTR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated TR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated transpiration
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ALBEDO(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ALBEDO
- grid_mapping :
- crs
- long_name :
- Surface albedo including snow effects
- number_of_significant_digits :
- 5
- units :
- 1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - BF(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, bf=0 => isobaric; bf=znw => sigma
- long_name :
- Full levels, bf=0 => isobaric; bf=znw => sigma
- units :
- Dimensionless
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - BH(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, bh=0 => isobaric; bh=znu => sigma
- long_name :
- Half levels, bh=0 => isobaric; bh=znu => sigma
- units :
- Dimensionless
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C1F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c1f = d bf / d eta, using znu
- long_name :
- Full levels, c1f = d bf / d eta, using znu
- units :
- Dimensionless
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C1H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c1h = d bf / d eta, using znw
- long_name :
- Half levels, c1h = d bf / d eta, using znw
- units :
- Dimensionless
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C2F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c2f = (1-c1f)*(p0-pt)
- long_name :
- Full levels, c2f = (1-c1f)*(p0-pt)
- units :
- Pa
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C2H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c2h = (1-c1h)*(p0-pt)
- long_name :
- Half levels, c2h = (1-c1h)*(p0-pt)
- units :
- Pa
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C3F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c3f = bf
- long_name :
- Full levels, c3f = bf
- units :
- Dimensionless
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C3H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c3h = bh
- long_name :
- Half levels, c3h = bh
- units :
- Dimensionless
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C4F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c4f = (eta-bf)*(p0-pt)+pt, using znw
- long_name :
- Full levels, c4f = (eta-bf)*(p0-pt)+pt, using znw
- units :
- Pa
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C4H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c4h = (eta-bh)*(p0-pt)+pt, using znu
- long_name :
- Half levels, c4h = (eta-bh)*(p0-pt)+pt, using znu
- units :
- Pa
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - CANWAT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- CANOPY WATER
- grid_mapping :
- crs
- long_name :
- Canopy intercepted water
- units :
- kg m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - CF1()float32...
- description :
- 2nd order extrapolation constant
- long_name :
- 2nd order extrapolation constant
- units :
[1 values with dtype=float32]
- CF2()float32...
- description :
- 2nd order extrapolation constant
- long_name :
- 2nd order extrapolation constant
- units :
[1 values with dtype=float32]
- CF3()float32...
- description :
- 2nd order extrapolation constant
- long_name :
- 2nd order extrapolation constant
- units :
[1 values with dtype=float32]
- CFN()float32...
- description :
- extrapolation constant
- long_name :
- Extrapolation constant
- units :
[1 values with dtype=float32]
- CFN1()float32...
- description :
- extrapolation constant
- long_name :
- Extrapolation constant
- units :
[1 values with dtype=float32]
- CLAT(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- COMPUTATIONAL GRID LATITUDE, SOUTH IS NEGATIVE
- grid_mapping :
- crs
- long_name :
- Computational grid latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - COSALPHA(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Local cosine of map rotation
- grid_mapping :
- crs
- long_name :
- Local cosine of map rotation
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - DN(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- d(eta) values between half (mass) levels
- long_name :
- D(eta) values between half (mass) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - DNW(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- d(eta) values between full (w) levels
- long_name :
- D(eta) values between full (w) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - DZS(soil_layers_stag)float32dask.array<chunksize=(4,), meta=np.ndarray>
- description :
- THICKNESSES OF SOIL LAYERS
- long_name :
- Thickness of soil layers
- units :
- m
Array Chunk Bytes 16 B 16 B Shape (4,) (4,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - E(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Coriolis cosine latitude term
- grid_mapping :
- crs
- long_name :
- Coriolis cosine latitude term
- units :
- s-1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - F(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Coriolis sine latitude term
- grid_mapping :
- crs
- long_name :
- Coriolis sine latitude term
- units :
- s-1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - FNM(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- upper weight for vertical stretching
- grid_mapping :
- crs
- long_name :
- Upper weight for vertical stretching
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - FNP(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- lower weight for vertical stretching
- long_name :
- Lower weight for vertical stretching
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - GRAUPEL_ACC_NC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED GRAUPEL WATER EQUIVALENT OVER prec_acc_dt PERIODS OF TIME
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated graupel water equivalent
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Terrain Height
- grid_mapping :
- crs
- long_name :
- Terrain Height
- units :
- m
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - ISLTYP(y, x)int32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- DOMINANT SOIL CATEGORY
- flag_meanings :
- sand loamy_sand sand_loam silt_loam silt loam sandy_clay_loam silty_clay_loam clay_loam sandy_clay silty_clay clay organic_material water bedrock other_land-ice
- flag_values :
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- grid_mapping :
- crs
- long_name :
- Dominant soil category
- units :
- valid_range :
- 1, 16
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type int32 numpy.ndarray - IVGTYP(y, x)int32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- DOMINANT VEGETATION CATEGORY
- flag_meanings :
- evergreen_needleleaf_forest evergreen_broadleaf_forest deciduous_needleleaf_forest deciduous_broadleaf_forest mixed_forests closed_shrublands open_shrublands woody_savannas savannas grasslands permanent_wetlands croplands urban_and_built-up cropland-natural_vegetation_mosaic snow_and_ice barren_or_sparsely_vegetated water wooded_tundra mixed_tundra barren_tundra
- flag_values :
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- grid_mapping :
- crs
- long_name :
- Dominant vegetation category
- units :
- valid_range :
- 1, 20
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type int32 numpy.ndarray - LAKEMASK(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LAKE MASK (1 FOR LAKE, 0 FOR NON-LAKE)
- flag_meanings :
- non-lake lake
- flag_values :
- 0.0, 1.0
- grid_mapping :
- crs
- long_name :
- Lake mask (1 for lake, 0 for non-lake)
- units :
- valid_range :
- 0.0, 1.0
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - LANDMASK(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LAND MASK (1 FOR LAND, 0 FOR WATER)
- flag_meanings :
- water land
- flag_values :
- 0.0, 1.0
- grid_mapping :
- crs
- long_name :
- Land mask (1 for land, 0 for water)
- units :
- valid_range :
- 0.0, 1.0
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - LU_INDEX(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LAND USE CATEGORY
- flag_meanings :
- evergreen_needleleaf_forest evergreen_broadleaf_forest deciduous_needleleaf_forest deciduous_broadleaf_forest mixed_forests closed_shrublands open_shrublands woody_savannas savannas grasslands permanent_wetlands croplands urban_and_built-up cropland-natural_vegetation_mosaic snow_and_ice barren_or_sparsely_vegetated water wooded_tundra mixed_tundra barren_tundra
- flag_values :
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- grid_mapping :
- crs
- long_name :
- Land use category
- units :
- valid_range :
- 1, 20
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_M(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on mass grid
- grid_mapping :
- crs
- long_name :
- Map scale factor on mass grid
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_MX(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on mass grid, x direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on mass grid, x direction
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_MY(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on mass grid, y direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on mass grid, y direction
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_U(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on u-grid
- grid_mapping :
- crs
- long_name :
- Map scale factor on u-grid
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_UX(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on u-grid, x direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on u-grid, x direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_UY(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on u-grid, y direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on u-grid, y direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_V(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on v-grid
- grid_mapping :
- crs
- long_name :
- Map scale factor on v-grid
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_VX(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on v-grid, x direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on v-grid, x direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_VY(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on v-grid, y direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on v-grid, y direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAX_MSTFX()float32...
- description :
- Max map factor in domain
- long_name :
- Maximum map factor in domain
- units :
[1 values with dtype=float32]
- MAX_MSTFY()float32...
- description :
- Max map factor in domain
- long_name :
- Maximum map factor in domain
- units :
[1 values with dtype=float32]
- MF_VX_INV(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Inverse map scale factor on v-grid, x direction
- grid_mapping :
- crs
- long_name :
- Inverse map scale factor on v-grid, x direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MLCAPE(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- MIXED-LAYER CAPE
- grid_mapping :
- crs
- long_name :
- Mixed-layer convective available potential energy (CAPE)
- units :
- J kg-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - MUB(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- base state dry air mass in column
- grid_mapping :
- crs
- long_name :
- Base state dry air mass in column
- units :
- Pa
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - P00()float32...
- description :
- BASE STATE PRESURE
- long_name :
- Base state pressure
- units :
- Pa
[1 values with dtype=float32]
- PB(bottom_top, y, x)float32dask.array<chunksize=(50, 175, 175), meta=np.ndarray>
- description :
- BASE STATE PRESSURE
- grid_mapping :
- crs
- long_name :
- Base state pressure
- units :
- Pa
Array Chunk Bytes 264.65 MiB 5.84 MiB Shape (50, 1015, 1367) (50, 175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - PBLH(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- PBL HEIGHT
- grid_mapping :
- crs
- long_name :
- Planetary boundary layer height
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - PHB(bottom_top_stag, y, x)float32dask.array<chunksize=(51, 175, 175), meta=np.ndarray>
- description :
- base-state geopotential
- grid_mapping :
- crs
- long_name :
- Base-state geopotential
- units :
- m2 s-2
Array Chunk Bytes 269.94 MiB 5.96 MiB Shape (51, 1015, 1367) (51, 175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - PREC_ACC_NC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED GRID SCALE PRECIPITATION OVER prec_acc_dt PERIODS OF TIME
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated grid scale precipitation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - PSFC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- SFC PRESSURE
- grid_mapping :
- crs
- long_name :
- Surface pressure
- units :
- Pa
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - PWAT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- Precipitable Water
- units :
- meters
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - P_STRAT()float32...
- description :
- BASE STATE PRESSURE AT BOTTOM OF STRATOSPHERE
- long_name :
- Base state pressure at bottom of stratosphere
- units :
- Pa
[1 values with dtype=float32]
- P_TOP()float32...
- description :
- PRESSURE TOP OF THE MODEL
- long_name :
- Pressure top of the model
- units :
- Pa
[1 values with dtype=float32]
- Q2(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- QV at 2 M
- grid_mapping :
- crs
- long_name :
- Water vapor mixing ratio at 2 meters
- units :
- kg kg-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - QRFS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- sum baseflow
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated baseflow
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - QSLAT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- sum lateral flow
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated groundwater lateral flow
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - QSPRINGS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- sum seeping water
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated seeping water
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - QVAPOR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- Water vapor mixing ratio
- grid_mapping :
- crs
- long_name :
- Water vapor mixing ratio
- units :
- kg kg-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - RDN(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- inverse d(eta) values between half (mass) levels
- long_name :
- Inverse d(eta) values between half (mass) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - RDNW(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- inverse d(eta) values between full (w) levels
- long_name :
- Inverse d(eta) values between full (w) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - RDX()float32...
- description :
- INVERSE X GRID LENGTH
- long_name :
- Inverse X grid length
- units :
- m-1
[1 values with dtype=float32]
- RDY()float32...
- description :
- INVERSE Y GRID LENGTH
- long_name :
- Inverse Y grid length
- units :
- m-1
[1 values with dtype=float32]
- RECH(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- sum water table recharge
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated water table recharge
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SH2O(time, soil_layers_stag, y, x)float32dask.array<chunksize=(144, 4, 175, 175), meta=np.ndarray>
- description :
- SOIL LIQUID WATER
- grid_mapping :
- crs
- long_name :
- Soil liquid water
- number_of_significant_digits :
- 5
- units :
- m3 m-3
Array Chunk Bytes 7.61 TiB 67.29 MiB Shape (376945, 4, 1015, 1367) (144, 4, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SHDMAX(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- ANNUAL MAX VEG FRACTION
- grid_mapping :
- crs
- long_name :
- Annual maximum vegetation fraction
- units :
- 1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - SHDMIN(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- ANNUAL MIN VEG FRACTION
- grid_mapping :
- crs
- long_name :
- Annual minimum vegetation fraction
- units :
- 1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - SINALPHA(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Local sine of map rotation
- grid_mapping :
- crs
- long_name :
- Local sine of map rotation
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - SMCWTD(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- deep soil moisture
- grid_mapping :
- crs
- long_name :
- Deep soil moisture
- units :
- m3 m-3
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SMOIS(time, soil_layers_stag, y, x)float32dask.array<chunksize=(144, 4, 175, 175), meta=np.ndarray>
- description :
- SOIL MOISTURE
- grid_mapping :
- crs
- long_name :
- Soil moisture
- number_of_significant_digits :
- 5
- units :
- m3 m-3
Array Chunk Bytes 7.61 TiB 67.29 MiB Shape (376945, 4, 1015, 1367) (144, 4, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNICE(time, snow_layers_stag, y, x)float32dask.array<chunksize=(144, 3, 175, 175), meta=np.ndarray>
- description :
- snow layer ice
- grid_mapping :
- crs
- long_name :
- Snow layer ice
- units :
- mm
Array Chunk Bytes 5.71 TiB 50.47 MiB Shape (376945, 3, 1015, 1367) (144, 3, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNLIQ(time, snow_layers_stag, y, x)float32dask.array<chunksize=(144, 3, 175, 175), meta=np.ndarray>
- description :
- snow layer liquid
- grid_mapping :
- crs
- long_name :
- Snow layer liquid
- units :
- mm
Array Chunk Bytes 5.71 TiB 50.47 MiB Shape (376945, 3, 1015, 1367) (144, 3, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOALB(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- ANNUAL MAX SNOW ALBEDO IN FRACTION
- grid_mapping :
- crs
- long_name :
- Annual maximum snow albedo in fraction
- units :
- 1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOW(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- SNOW WATER EQUIVALENT
- grid_mapping :
- crs
- long_name :
- Snow water equivalent
- units :
- kg m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOWC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- FLAG INDICATING SNOW COVERAGE (1 FOR SNOW COVER)
- grid_mapping :
- crs
- long_name :
- Snow cover fraction
- number_of_significant_digits :
- 5
- units :
- valid_range :
- 0.0, 1.0
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOWENERGY(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- energy content in snow relative to 273.16
- grid_mapping :
- crs
- long_name :
- Energy content in snow relative to 273.16 K
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOWH(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- PHYSICAL SNOW DEPTH
- grid_mapping :
- crs
- long_name :
- Physical snow depth
- number_of_significant_digits :
- 5
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOW_ACC_NC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED SNOW WATER EQUIVALENT OVER prec_acc_dt PERIODS OF TIME
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated snow water equivalent
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SOILENERGY(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- energy content in soil relative to 273.16
- grid_mapping :
- crs
- long_name :
- Energy content in soil relative to 273.16 K
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- fraction of frozen precipitation
- grid_mapping :
- crs
- long_name :
- Fraction of frozen precipitation
- number_of_significant_digits :
- 5
- units :
- 1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - T00()float32...
- description :
- BASE STATE TEMPERATURE
- long_name :
- Base state temperature
- units :
- K
[1 values with dtype=float32]
- T2(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- TEMP at 2 M
- grid_mapping :
- crs
- long_name :
- Temperature at 2 meters
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TD2(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- 2-m dewpoint temperature
- grid_mapping :
- crs
- long_name :
- Dewpoint temperature at 2 meters
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TISO()float32...
- description :
- TEMP AT WHICH THE BASE T TURNS CONST
- long_name :
- Temperature at which the base perturbation potential temperature turns constant
- units :
- K
[1 values with dtype=float32]
- TK(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- Air temperature at the lowest model level
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TLP()float32...
- description :
- BASE STATE LAPSE RATE
- long_name :
- Base state lapse rate
- units :
[1 values with dtype=float32]
- TLP_STRAT()float32...
- description :
- BASE STATE LAPSE RATE (DT/D(LN(P)) IN STRATOSPHERE
- long_name :
- Base state lapse rate (DT/D(LN(P)) in stratosphere
- units :
- K
[1 values with dtype=float32]
- TRAD(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- surface radiative temperature
- grid_mapping :
- crs
- long_name :
- Surface radiative temperature
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TSK(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- SURFACE SKIN TEMPERATURE
- grid_mapping :
- crs
- long_name :
- Surface skin temperature
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TSLB(time, soil_layers_stag, y, x)float32dask.array<chunksize=(144, 4, 175, 175), meta=np.ndarray>
- description :
- SOIL TEMPERATURE
- grid_mapping :
- crs
- long_name :
- Soil temperature
- number_of_significant_digits :
- 5
- units :
- K
Array Chunk Bytes 7.61 TiB 67.29 MiB Shape (376945, 4, 1015, 1367) (144, 4, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TSNO(time, snow_layers_stag, y, x)float32dask.array<chunksize=(144, 3, 175, 175), meta=np.ndarray>
- description :
- snow temperature
- grid_mapping :
- crs
- long_name :
- Snow temperature
- number_of_significant_digits :
- 5
- units :
- K
Array Chunk Bytes 5.71 TiB 50.47 MiB Shape (376945, 3, 1015, 1367) (144, 3, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TV(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- vegetation leaf temperature
- grid_mapping :
- crs
- long_name :
- Vegetation leaf temperature
- number_of_significant_digits :
- 5
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - U(time, y, x_stag)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- x-wind component
- grid_mapping :
- crs
- long_name :
- U-component of wind with respect to model grid
- units :
- m s-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1368) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - U10(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- U at 10 M
- grid_mapping :
- crs
- long_name :
- U-component of wind at 10 meters with respect to model grid
- units :
- m s-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - V(time, y_stag, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- y-wind component
- grid_mapping :
- crs
- long_name :
- V-component of wind with respect to model grid
- units :
- m s-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1016, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - V10(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- V at 10 M
- grid_mapping :
- crs
- long_name :
- V-component of wind at 10 meters with respect to model grid
- units :
- m s-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - VAR(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- OROGRAPHIC VARIANCE
- grid_mapping :
- crs
- long_name :
- Orographic variance
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - VAR_SSO(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- variance of subgrid-scale orography
- grid_mapping :
- crs
- long_name :
- Variance of subgrid-scale orography
- units :
- m2
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - XLAND(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LAND MASK (1 FOR LAND, 2 FOR WATER)
- flag_meanings :
- land water
- flag_values :
- 1, 2
- grid_mapping :
- crs
- long_name :
- Land mask (1 for land, 2 for water)
- units :
- valid_range :
- 1.0, 2.0
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - Z(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- Geopotential Height at the lowest model level (PH+PHB)/9.81
- units :
- meters MSL
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ZETATOP()float32...
- description :
- ZETA AT MODEL TOP
- long_name :
- ZETA at model top
- units :
[1 values with dtype=float32]
- ZNU(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- eta values on half (mass) levels
- long_name :
- Eta values on half (mass) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ZNW(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- eta values on full (w) levels
- long_name :
- Eta values on full (w) levels
- units :
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ZS(soil_layers_stag)float32dask.array<chunksize=(4,), meta=np.ndarray>
- description :
- DEPTHS OF CENTERS OF SOIL LAYERS
- long_name :
- Depths of centers of soil layers
- units :
- m
Array Chunk Bytes 16 B 16 B Shape (4,) (4,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ZSNSO(time, snso_layers_stag, y, x)float32dask.array<chunksize=(144, 7, 175, 175), meta=np.ndarray>
- description :
- layer-bottom depth from snow surf
- grid_mapping :
- crs
- long_name :
- Layer-bottom depth from snow surface
- number_of_significant_digits :
- 5
- units :
- m
Array Chunk Bytes 13.32 TiB 117.76 MiB Shape (376945, 7, 1015, 1367) (144, 7, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ZWT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- water table depth
- grid_mapping :
- crs
- long_name :
- Water table depth
- number_of_significant_digits :
- 5
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - crs()int64...
- crs_wkt :
- PROJCRS["unknown",BASEGEOGCRS["unknown",DATUM["unknown",ELLIPSOID["unknown",6370000,0,LENGTHUNIT["metre",1,ID["EPSG",9001]]]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8901]]],CONVERSION["unknown",METHOD["Lambert Conic Conformal (2SP)",ID["EPSG",9802]],PARAMETER["Latitude of false origin",39.1000061035156,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8821]],PARAMETER["Longitude of false origin",-97.9000015258789,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8822]],PARAMETER["Latitude of 1st standard parallel",30,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8823]],PARAMETER["Latitude of 2nd standard parallel",50,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8824]],PARAMETER["Easting at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8826]],PARAMETER["Northing at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8827]]],CS[Cartesian,2],AXIS["(E)",east,ORDER[1],LENGTHUNIT["metre",1,ID["EPSG",9001]]],AXIS["(N)",north,ORDER[2],LENGTHUNIT["metre",1,ID["EPSG",9001]]]]
- false_easting :
- 0.0
- false_northing :
- 0.0
- geographic_crs_name :
- unknown
- grid_mapping_name :
- lambert_conformal_conic
- horizontal_datum_name :
- unknown
- inverse_flattening :
- 0.0
- latitude_of_projection_origin :
- 39.100006103515625
- longitude_of_central_meridian :
- -97.9000015258789
- longitude_of_prime_meridian :
- 0.0
- prime_meridian_name :
- Greenwich
- projected_crs_name :
- unknown
- reference_ellipsoid_name :
- unknown
- semi_major_axis :
- 6370000.0
- semi_minor_axis :
- 6370000.0
- standard_parallel :
- [30.0, 50.0]
[1 values with dtype=int64]
- timePandasIndex
PandasIndex(DatetimeIndex(['1979-10-01 00:00:00', '1979-10-01 01:00:00', '1979-10-01 02:00:00', '1979-10-01 03:00:00', '1979-10-01 04:00:00', '1979-10-01 05:00:00', '1979-10-01 06:00:00', '1979-10-01 07:00:00', '1979-10-01 08:00:00', '1979-10-01 09:00:00', ... '2022-09-30 15:00:00', '2022-09-30 16:00:00', '2022-09-30 17:00:00', '2022-09-30 18:00:00', '2022-09-30 19:00:00', '2022-09-30 20:00:00', '2022-09-30 21:00:00', '2022-09-30 22:00:00', '2022-09-30 23:00:00', '2022-10-01 00:00:00'], dtype='datetime64[ns]', name='time', length=376945, freq=None))
- xPandasIndex
PandasIndex(Index([-2732000.0, -2728000.0, -2724000.0, -2720000.0, -2716000.0, -2712000.0, -2708000.0, -2704000.0, -2700000.0, -2696000.0, ... 2696000.0, 2700000.0, 2704000.0, 2708000.0, 2712000.0, 2716000.0, 2720000.0, 2724000.0, 2728000.0, 2732000.0], dtype='float64', name='x', length=1367))
- yPandasIndex
PandasIndex(Index([-2027999.9999999958, -2023999.9999999958, -2019999.9999999958, -2015999.9999999958, -2011999.9999999958, -2007999.9999999958, -2003999.9999999958, -1999999.9999999958, -1995999.9999999958, -1991999.9999999958, ... 1992000.0000000042, 1996000.0000000042, 2000000.0000000042, 2004000.0000000042, 2008000.0000000042, 2012000.0000000042, 2016000.0000000042, 2020000.0000000042, 2024000.0000000042, 2028000.0000000042], dtype='float64', name='y', length=1015))
- AER_ANGEXP_OPT :
- 1
- AER_ANGEXP_VAL :
- 1.2999999523162842
- AER_AOD550_OPT :
- 1
- AER_AOD550_VAL :
- 0.11999999731779099
- AER_ASY_OPT :
- 1
- AER_ASY_VAL :
- 0.8999999761581421
- AER_OPT :
- 1
- AER_SSA_OPT :
- 1
- AER_SSA_VAL :
- 0.8500000238418579
- AER_TYPE :
- 1
- BLDT :
- 0.0
- BL_PBL_PHYSICS :
- 1
- BOTTOM-TOP_GRID_DIMENSION :
- 51
- BOTTOM-TOP_PATCH_END_STAG :
- 51
- BOTTOM-TOP_PATCH_END_UNSTAG :
- 50
- BOTTOM-TOP_PATCH_START_STAG :
- 1
- BOTTOM-TOP_PATCH_START_UNSTAG :
- 1
- BUCKET_J :
- 1000000000.0
- BUCKET_MM :
- 100.0
- CEN_LAT :
- 39.100006103515625
- CEN_LON :
- -97.89999389648438
- CUDT :
- 5.0
- CU_PHYSICS :
- 0
- Contacts :
- CHANGHAI LIU (chliu@ucar.edu), KYOKO IKEDA (kyoko@ucar.edu)
- DAMPCOEF :
- 0.20000000298023224
- DAMP_OPT :
- 3
- DFI_OPT :
- 0
- DIFF_6TH_FACTOR :
- 0.11999999731779099
- DIFF_6TH_OPT :
- 0
- DIFF_OPT :
- 2
- DT :
- 20.0
- DTRAMP_MIN :
- 60.0
- DVEG :
- 9
- DX :
- 4000.0
- DY :
- 4000.0
- Division :
- NCAR/RAL/HAP
- ETAC :
- 0.0
- FEEDBACK :
- 1
- FGDT :
- 2.0
- FileGenerated :
- 20210204
- GFDDA_END_H :
- 999999
- GFDDA_INTERVAL_M :
- 180
- GMT :
- 0.0
- GPH :
- 4.999999873689376e-05
- GRAV_SETTLING :
- 0
- GRIDTYPE :
- C
- GRID_FDDA :
- 2
- GRID_ID :
- 1
- GRID_SFDDA :
- 0
- GT :
- 4.999999873689376e-05
- GUV :
- 4.999999873689376e-05
- GWD_OPT :
- 0
- HYBRID_OPT :
- -1
- HYPSOMETRIC_OPT :
- 2
- ICLOUD :
- 1
- ICLOUD_CU :
- 0
- IF_RAMPING :
- 1
- ISFFLX :
- 1
- ISFTCFLX :
- 0
- ISHALLOW :
- 0
- ISICE :
- 15
- ISLAKE :
- 21
- ISOILWATER :
- 14
- ISURBAN :
- 13
- ISWATER :
- 17
- I_PARENT_START :
- 1
- JULDAY :
- 274
- JULYR :
- 1979
- J_PARENT_START :
- 1
- KHDIF :
- 0.0
- KM_OPT :
- 4
- KVDIF :
- 0.0
- MAP_PROJ :
- 1
- MAP_PROJ_CHAR :
- Lambert Conformal
- MFSHCONV :
- 0
- MMINLU :
- MODIFIED_IGBP_MODIS_NOAH
- MOAD_CEN_LAT :
- 39.100006103515625
- MOIST_ADV_OPT :
- 1
- MP_PHYSICS :
- 8
- NCO :
- netCDF Operators version 4.9.5 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
- NUM_LAND_CAT :
- 21
- OBS_NUDGE_OPT :
- 0
- OPT_ALB :
- 2
- OPT_BTR :
- 2
- OPT_CRS :
- 1
- OPT_FRZ :
- 1
- OPT_GLA :
- 1
- OPT_INF :
- 1
- OPT_RAD :
- 3
- OPT_RSF :
- 1
- OPT_RUN :
- 5
- OPT_SFC :
- 1
- OPT_SNF :
- 4
- OPT_STC :
- 3
- OPT_TBOT :
- 1
- PARENT_GRID_RATIO :
- 1
- PARENT_ID :
- 0
- POLE_LAT :
- 90.0
- POLE_LON :
- 0.0
- PREC_ACC_DT :
- 60.0
- Project :
- USGS CONUS404
- RADT :
- 5.0
- RA_LW_PHYSICS :
- 4
- RA_SW_PHYSICS :
- 4
- SCALAR_ADV_OPT :
- 1
- SCALAR_PBLMIX :
- 0
- SF_LAKE_PHYSICS :
- 0
- SF_OCEAN_PHYSICS :
- 0
- SF_SFCLAY_PHYSICS :
- 1
- SF_SURFACE_PHYSICS :
- 4
- SF_URBAN_PHYSICS :
- 0
- SGFDDA_END_H :
- 0
- SGFDDA_INTERVAL_M :
- 0
- SHCU_PHYSICS :
- 0
- SIMULATION_INITIALIZATION_TYPE :
- REAL-DATA CASE
- SIMULATION_START_DATE :
- 1979-10-01_00:00:00
- SKEBS_ON :
- 0
- SMOOTH_OPTION :
- 2
- SOUTH-NORTH_GRID_DIMENSION :
- 1016
- SOUTH-NORTH_PATCH_END_STAG :
- 1016
- SOUTH-NORTH_PATCH_END_UNSTAG :
- 1015
- SOUTH-NORTH_PATCH_START_STAG :
- 1
- SOUTH-NORTH_PATCH_START_UNSTAG :
- 1
- SPEC_BDY_FINAL_MU :
- 1
- SST_UPDATE :
- 1
- STAND_LON :
- -97.9000015258789
- START_DATE :
- 1979-10-01_00:00:00
- SURFACE_INPUT_SOURCE :
- 1
- SWINT_OPT :
- 0
- SWRAD_SCAT :
- 1.0
- Source_Code :
- make_conusii_2d.csh
- TITLE :
- OUTPUT FROM WRF V3.9.1.1 MODEL
- TKE_ADV_OPT :
- 1
- TOPO_WIND :
- 1
- TRACER_PBLMIX :
- 1
- TRUELAT1 :
- 30.0
- TRUELAT2 :
- 50.0
- USE_Q_DIABATIC :
- 0
- USE_THETA_M :
- 0
- WEST-EAST_GRID_DIMENSION :
- 1368
- WEST-EAST_PATCH_END_STAG :
- 1368
- WEST-EAST_PATCH_END_UNSTAG :
- 1367
- WEST-EAST_PATCH_START_STAG :
- 1
- WEST-EAST_PATCH_START_UNSTAG :
- 1
- W_DAMPING :
- 1
- YSU_TOPDOWN_PBLMIX :
- 0
- history :
- Tue Mar 29 16:35:22 2022: ncrcat -A -vW /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_W_d01_1979-10-01_00:00:00.nc /glade/scratch/kyoko/USGS/conus404_production_outputs/OUTPUT/WY1980/wrf2d_d01_1979-10-01_00:00:00 Tue Mar 29 16:35:21 2022: ncrcat -A -vZ /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_Z_d01_1979-10-01_00:00:00.nc /glade/scratch/kyoko/USGS/conus404_production_outputs/OUTPUT/WY1980/wrf2d_d01_1979-10-01_00:00:00
- history_of_appended_files :
- Tue Mar 29 16:35:22 2022: Appended file /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_W_d01_1979-10-01_00:00:00.nc had no "history" attribute Tue Mar 29 16:35:21 2022: Appended file /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_Z_d01_1979-10-01_00:00:00.nc had no "history" attribute
# Examine the grid data structure for SNOW:
ds.SNOW
<xarray.DataArray 'SNOW' (time: 376945, y: 1015, x: 1367)> Size: 2TB dask.array<open_dataset-SNOW, shape=(376945, 1015, 1367), dtype=float32, chunksize=(144, 175, 175), chunktype=numpy.ndarray> Coordinates: lat (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray> lon (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray> * time (time) datetime64[ns] 3MB 1979-10-01 ... 2022-10-01 * x (x) float64 11kB -2.732e+06 -2.728e+06 ... 2.728e+06 2.732e+06 * y (y) float64 8kB -2.028e+06 -2.024e+06 ... 2.024e+06 2.028e+06 metpy_crs object 8B Projection: lambert_conformal_conic Attributes: description: SNOW WATER EQUIVALENT grid_mapping: crs long_name: Snow water equivalent units: kg m-2
- time: 376945
- y: 1015
- x: 1367
- dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - lat(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 317 graph layers Data type float32 numpy.ndarray - lon(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 317 graph layers Data type float32 numpy.ndarray - time(time)datetime64[ns]1979-10-01 ... 2022-10-01
- axis :
- T
- description :
- minutes since 1979-10-01 00:00:00
- long_name :
- Minutes since 1979-10-01 00:00:00
- standard_name :
- time
array(['1979-10-01T00:00:00.000000000', '1979-10-01T01:00:00.000000000', '1979-10-01T02:00:00.000000000', ..., '2022-09-30T22:00:00.000000000', '2022-09-30T23:00:00.000000000', '2022-10-01T00:00:00.000000000'], dtype='datetime64[ns]')
- x(x)float64-2.732e+06 -2.728e+06 ... 2.732e+06
- long_name :
- x coordinate of projection
- standard_name :
- projection_x_coordinate
- units :
- meters
array([-2732000., -2728000., -2724000., ..., 2724000., 2728000., 2732000.])
- y(y)float64-2.028e+06 -2.024e+06 ... 2.028e+06
- long_name :
- y coordinate of projection
- standard_name :
- projection_y_coordinate
- units :
- meters
array([-2028000., -2024000., -2020000., ..., 2020000., 2024000., 2028000.])
- metpy_crs()objectProjection: lambert_conformal_conic
array(<metpy.plots.mapping.CFProjection object at 0x7f19cfc01a10>, dtype=object)
- timePandasIndex
PandasIndex(DatetimeIndex(['1979-10-01 00:00:00', '1979-10-01 01:00:00', '1979-10-01 02:00:00', '1979-10-01 03:00:00', '1979-10-01 04:00:00', '1979-10-01 05:00:00', '1979-10-01 06:00:00', '1979-10-01 07:00:00', '1979-10-01 08:00:00', '1979-10-01 09:00:00', ... '2022-09-30 15:00:00', '2022-09-30 16:00:00', '2022-09-30 17:00:00', '2022-09-30 18:00:00', '2022-09-30 19:00:00', '2022-09-30 20:00:00', '2022-09-30 21:00:00', '2022-09-30 22:00:00', '2022-09-30 23:00:00', '2022-10-01 00:00:00'], dtype='datetime64[ns]', name='time', length=376945, freq=None))
- xPandasIndex
PandasIndex(Index([-2732000.0, -2728000.0, -2724000.0, -2720000.0, -2716000.0, -2712000.0, -2708000.0, -2704000.0, -2700000.0, -2696000.0, ... 2696000.0, 2700000.0, 2704000.0, 2708000.0, 2712000.0, 2716000.0, 2720000.0, 2724000.0, 2728000.0, 2732000.0], dtype='float64', name='x', length=1367))
- yPandasIndex
PandasIndex(Index([-2027999.9999999958, -2023999.9999999958, -2019999.9999999958, -2015999.9999999958, -2011999.9999999958, -2007999.9999999958, -2003999.9999999958, -1999999.9999999958, -1995999.9999999958, -1991999.9999999958, ... 1992000.0000000042, 1996000.0000000042, 2000000.0000000042, 2004000.0000000042, 2008000.0000000042, 2012000.0000000042, 2016000.0000000042, 2020000.0000000042, 2024000.0000000042, 2028000.0000000042], dtype='float64', name='y', length=1015))
- description :
- SNOW WATER EQUIVALENT
- grid_mapping :
- crs
- long_name :
- Snow water equivalent
- units :
- kg m-2
Looks like this dataset is organized in three coordinates (x, y, and time), and we have used the metpy
package to pase the crs information into the metpy_crs
variable:
crs = ds['SNOW'].metpy.cartopy_crs
crs
<cartopy.crs.LambertConformal object at 0x7f19cf57a350>
Example A: Load the entire spatial domain for a variable at a specific time step#
%%time
da = ds.SNOW_ACC_NC.sel(time='2009-12-24 00:00').load()
### NOTE: the `load()` is dask-aware, so will operate in parallel if
### a cluster has been started.
CPU times: user 3 s, sys: 356 ms, total: 3.36 s
Wall time: 6.88 s
da.hvplot.quadmesh(x='lon', y='lat', rasterize=True, geo=True, tiles='OSM', cmap='viridis').opts('Image', alpha=0.5)
Example B: Load a time series for a variable at a specific grid cell for a specified time range#
We will identify a point that we want to pull data for using lat/lon coordinates.
The CONUS404 data is in a Lambert Conformal Conic projection, so we need to re-project/transform using the
built-in crs
we examined earlier.
lat,lon = 39.978322,-105.2772194
x, y = crs.transform_point(lon, lat, src_crs=ccrs.PlateCarree())
print(x,y) # these vals are in LCC
-618215.7570892773 121899.89692719541
%%time
# pull out a particulat time slice at the specified coordinates
da = ds.PREC_ACC_NC.sel(x=x, y=y, method='nearest').sel(time=slice('2013-01-01 00:00','2013-12-31 00:00')).load()
CPU times: user 1.45 s, sys: 211 ms, total: 1.66 s
Wall time: 3.59 s
# plot your time series
da.hvplot(x='time', grid=True)
Stop cluster#
Uncomment the line below if you started a dask cluster to shut it down.
#client.close(); cluster.shutdown()