Pangeo CONUS404 Spatial Aggregation over DRB-extent HUC12s#
In this notebook, we will be showing how to aggregate gridded data to polygons. The method aggregates gridded data conservatively, i.e. by exactly partitioning each grid cell into the precise region boundaries. The method makes use of two key packages xarray
and geopandas
. Our implementation is based off of this Pangeo Discourse, which we have updated using more streamlined methods.
The overall approach consists of:
Represent both the original gridded data and target polygons as
geopandas.GeoSeries
objects (with vector geometries).Compute their area overlay and turn it into a sparse matrix of cell weights.
Perform weighted aggregation using
xarray.Dataset.weighted
along the spatial dimensions.
It is quite fast and transparent.
The spatial polygons used in this notebook come from the NHDPlusV2 snapshot of the Watershed Boundary Dataset HUC12 boundaries provided through the PyGeoHydro python package.
We use the HyTest intake catalog to access CONUS404 from the OSN pod. This notebook provides a relatively simple and efficient workflow that can be easily run on a local computer.
%xmode minimal
import os
import xarray as xr
import geopandas as gp
import pandas as pd
import numpy as np
import sparse
import hvplot.pandas
import hvplot.xarray
import dask
import cf_xarray
from pynhd import NLDI, WaterData
from pygeohydro import watershed
import intake
import cartopy.crs as ccrs
from shapely.geometry import Polygon
Exception reporting mode: Minimal
Open Dataset from Intake Catalog#
First, let’s begin by loading the CONUS404 daily data.
hytest_cat = intake.open_catalog("https://raw.githubusercontent.com/hytest-org/hytest/main/dataset_catalog/hytest_intake_catalog.yml")
catalog = hytest_cat['conus404-catalog']
list(catalog)
['conus404-hourly-onprem-hw',
'conus404-hourly-cloud',
'conus404-hourly-osn',
'conus404-daily-diagnostic-onprem-hw',
'conus404-daily-diagnostic-cloud',
'conus404-daily-diagnostic-osn',
'conus404-daily-onprem-hw',
'conus404-daily-cloud',
'conus404-daily-osn',
'conus404-monthly-onprem-hw',
'conus404-monthly-cloud',
'conus404-monthly-osn',
'conus404-hourly-ba-onprem-hw',
'conus404-hourly-ba-osn',
'conus404-daily-ba-onprem',
'conus404-daily-ba-osn',
'conus404-pgw-hourly-onprem-hw',
'conus404-pgw-hourly-osn',
'conus404-pgw-daily-diagnostic-onprem-hw',
'conus404-pgw-daily-diagnostic-osn',
'conus404-pgw-daily-onprem-hw',
'conus404-pgw-daily-osn']
As we can see there are three different locations for the conus404-daily
data set. The locations are (1) -onprem-hw
meaning it is stored on the USGS Hovenweep HPC, (2) -cloud
meaning it is store in an S3 bucket, or (3) -osn
meaning the data is on the USGS open storage network (OSN). As the OSN is free to access from any environment, we will use that for this example, but the location can easily be changed depending on your needs. We have a writeup of our different storage locations used in the intake catalog here.
If you change this notebook to use the CONUS404 dataset stored on S3 (options ending in
-cloud
), you will be pulling data from arequester-pays
S3 bucket. This means you have to set up your AWS credentials, else we won’t be able to load the data. Please note that reading the-cloud
data from S3 may incur charges if you are reading data outside of the us-west-2 region or running the notebook outside of the cloud altogether. If you would like to access one of the-cloud
options, uncomment and run the following code cell to set up your AWS credentials. You can find more info about this AWS helper function here.
# uncomment the lines below to read in your AWS credentials if you want to access data from a requester-pays bucket (-cloud)
# os.environ['AWS_PROFILE'] = 'default'
# %run ../environment_set_up/Help_AWS_Credentials.ipynb
Finally, read in the daily CONUS404 data set.
dataset = 'conus404-daily-osn'
conus404 = catalog[dataset].to_dask()
conus404
<xarray.Dataset> Size: 9TB Dimensions: (time: 15707, y: 1015, x: 1367, bottom_top_stag: 51, bottom_top: 50, soil_layers_stag: 4, x_stag: 1368, y_stag: 1016, snow_layers_stag: 3, snso_layers_stag: 7) Coordinates: lat (y, x) float32 6MB dask.array<chunksize=(350, 350), meta=np.ndarray> lat_u (y, x_stag) float32 6MB dask.array<chunksize=(350, 175), meta=np.ndarray> lat_v (y_stag, x) float32 6MB dask.array<chunksize=(175, 350), meta=np.ndarray> lon (y, x) float32 6MB dask.array<chunksize=(350, 350), meta=np.ndarray> lon_u (y, x_stag) float32 6MB dask.array<chunksize=(350, 175), meta=np.ndarray> lon_v (y_stag, x) float32 6MB dask.array<chunksize=(175, 350), meta=np.ndarray> * time (time) datetime64[ns] 126kB 1979-10-01 ... 2022-10-01 * x (x) float64 11kB -2.732e+06 -2.728e+06 ... 2.732e+06 * y (y) float64 8kB -2.028e+06 -2.024e+06 ... 2.028e+06 Dimensions without coordinates: bottom_top_stag, bottom_top, soil_layers_stag, x_stag, y_stag, snow_layers_stag, snso_layers_stag Data variables: (12/153) ACDEWC (time, y, x) float32 87GB dask.array<chunksize=(36, 350, 350), meta=np.ndarray> ACDRIPR (time, y, x) float32 87GB dask.array<chunksize=(36, 350, 350), meta=np.ndarray> ACDRIPS (time, y, x) float32 87GB dask.array<chunksize=(36, 350, 350), meta=np.ndarray> ACECAN (time, y, x) float32 87GB dask.array<chunksize=(36, 350, 350), meta=np.ndarray> ACEDIR (time, y, x) float32 87GB dask.array<chunksize=(36, 350, 350), meta=np.ndarray> ACETLSM (time, y, x) float32 87GB dask.array<chunksize=(36, 350, 350), meta=np.ndarray> ... ... ZNU (bottom_top) float32 200B dask.array<chunksize=(50,), meta=np.ndarray> ZNW (bottom_top_stag) float32 204B dask.array<chunksize=(51,), meta=np.ndarray> ZS (soil_layers_stag) float32 16B dask.array<chunksize=(4,), meta=np.ndarray> ZSNSO (time, snso_layers_stag, y, x) float32 610GB dask.array<chunksize=(36, 7, 350, 350), meta=np.ndarray> ZWT (time, y, x) float32 87GB dask.array<chunksize=(36, 350, 350), meta=np.ndarray> crs int64 8B ... Attributes: (12/148) AER_ANGEXP_OPT: 1 AER_ANGEXP_VAL: 1.2999999523162842 AER_AOD550_OPT: 1 AER_AOD550_VAL: 0.11999999731779099 AER_ASY_OPT: 1 AER_ASY_VAL: 0.8999999761581421 ... ... WEST-EAST_PATCH_START_STAG: 1 WEST-EAST_PATCH_START_UNSTAG: 1 W_DAMPING: 1 YSU_TOPDOWN_PBLMIX: 0 history: Tue Mar 29 16:35:22 2022: ncrcat -A -vW ... history_of_appended_files: Tue Mar 29 16:35:22 2022: Appended file ...
- time: 15707
- y: 1015
- x: 1367
- bottom_top_stag: 51
- bottom_top: 50
- soil_layers_stag: 4
- x_stag: 1368
- y_stag: 1016
- snow_layers_stag: 3
- snso_layers_stag: 7
- lat(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- grid_mapping :
- crs
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - lat_u(y, x_stag)float32dask.array<chunksize=(350, 175), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.30 MiB 239.26 kiB Shape (1015, 1368) (350, 175) Dask graph 24 chunks in 2 graph layers Data type float32 numpy.ndarray - lat_v(y_stag, x)float32dask.array<chunksize=(175, 350), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.30 MiB 239.26 kiB Shape (1016, 1367) (175, 350) Dask graph 24 chunks in 2 graph layers Data type float32 numpy.ndarray - lon(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- grid_mapping :
- crs
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - lon_u(y, x_stag)float32dask.array<chunksize=(350, 175), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.30 MiB 239.26 kiB Shape (1015, 1368) (350, 175) Dask graph 24 chunks in 2 graph layers Data type float32 numpy.ndarray - lon_v(y_stag, x)float32dask.array<chunksize=(175, 350), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.30 MiB 239.26 kiB Shape (1016, 1367) (175, 350) Dask graph 24 chunks in 2 graph layers Data type float32 numpy.ndarray - time(time)datetime64[ns]1979-10-01 ... 2022-10-01
array(['1979-10-01T00:00:00.000000000', '1979-10-02T00:00:00.000000000', '1979-10-03T00:00:00.000000000', ..., '2022-09-29T00:00:00.000000000', '2022-09-30T00:00:00.000000000', '2022-10-01T00:00:00.000000000'], dtype='datetime64[ns]')
- x(x)float64-2.732e+06 -2.728e+06 ... 2.732e+06
- long_name :
- x coordinate of projection
- standard_name :
- projection_x_coordinate
- units :
- m
array([-2732000., -2728000., -2724000., ..., 2724000., 2728000., 2732000.])
- y(y)float64-2.028e+06 -2.024e+06 ... 2.028e+06
- long_name :
- y coordinate of projection
- standard_name :
- projection_y_coordinate
- units :
- m
array([-2028000., -2024000., -2020000., ..., 2020000., 2024000., 2028000.])
- ACDEWC(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QDEWC
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated canopy dew rate
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACDRIPR(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QDRIPR
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated canopy precipitation drip rate
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACDRIPS(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QDRIPS
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated canopy snow drip rate
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACECAN(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated ECAN
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated net evaporation of canopy water (evap + sublim - dew - frost)
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEDIR(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated EDIR
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated net soil evaporation or snowpack sublimation (evap or sublim - dew or frost)
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACETLSM(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated ET
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated total evaporation
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACETRAN(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated ETRAN
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated plant transpiration
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVAC(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QEVAC
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated canopy evaporation
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVB(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated EVB
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated latent heat flux over bare ground
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVC(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated EVC
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated latent heat flux for canopy layer
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVG(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated EVG
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated ground latent heat flux below canopy
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACFROC(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QFROC
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated canopy frost
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACFRZC(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QFRZC
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated refreezing of canopy liquid water
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACGHB(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated GHB
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated heat flux into soil or snowpack for bare ground
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACGHFLSM(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated total ground heat flux
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated total ground heat flux into soil or snowpack
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACGHV(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated GHV
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated heat flux into soil or snowpack under canopy
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACINTR(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QINTR
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated canopy rain interception rate
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACINTS(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QINTS
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated canopy snow interception rate
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACLHFLSM(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated total latent heat flux
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated total latent heat flux
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACLWDNB(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- ACCUMULATED DOWNWELLING LONGWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated downwelling longwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACLWUPB(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- ACCUMULATED UPWELLING LONGWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated upwelling longwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACMELTC(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QMELTC
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated canopy snow melt
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACPONDING(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated PONDING
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated surface ponding from complete pack melt
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACQLAT(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- accumulated lateral flow
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated groundwater lateral flow
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACQRF(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- accumulated baseflow
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated groundwater baseflow
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRAINLSM(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated RAINLSM
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated liquid precipitation into land surface model
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRAINSNOW(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated rain on snow pack
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated rain on snow pack
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRUNSB(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated RUNSB
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated subsurface runoff
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRUNSF(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated RUNSF
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated surface runoff
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSHFLSM(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated total sensible heat flux
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated total sensible heat flux
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNBOT(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QSNBOT
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated liquid water flux out of bottom of snowpack
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNFRO(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QSNFRO
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated snowpack frost
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNOM(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- ACCUMULATED MELTED SNOW
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated total liquid water out of the snowpack
- units :
- kg m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNOWLSM(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated SNOWLSM
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated frozen precipitation into land surface model
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNSUB(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QSNSUB
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated snowpack sublimation
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSUBC(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QSUBC
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated canopy snow sublimation
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWDNB(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- ACCUMULATED DOWNWELLING SHORTWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated downwelling shortwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWDNLSM(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated SWDN
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated shortwave radiation down at land surface model
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWDNT(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- ACCUMULATED DOWNWELLING SHORTWAVE FLUX AT TOP
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated downwelling shortwave radiation flux at top
- units :
- J m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWUPB(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- ACCUMULATED UPWELLING SHORTWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated upwelling shortwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWUPLSM(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated SWUP
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated shortwave radiation up at land surface model
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACTHROR(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QTHROR
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated canopy rain throughfall
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACTHROS(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated QTHROS
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated canopy snow throughfall
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ACTR(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- acccumlated TR
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated transpiration
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ALBEDO(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- ALBEDO
- grid_mapping :
- crs
- long_name :
- Surface albedo including snow effects
- number_of_significant_digits :
- 5
- units :
- 1
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - BF(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, bf=0 => isobaric; bf=znw => sigma
- long_name :
- Full levels, bf=0 => isobaric; bf=znw => sigma
- units :
- Dimensionless
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - BH(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, bh=0 => isobaric; bh=znu => sigma
- long_name :
- Half levels, bh=0 => isobaric; bh=znu => sigma
- units :
- Dimensionless
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C1F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c1f = d bf / d eta, using znu
- long_name :
- Full levels, c1f = d bf / d eta, using znu
- units :
- Dimensionless
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C1H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c1h = d bf / d eta, using znw
- long_name :
- Half levels, c1h = d bf / d eta, using znw
- units :
- Dimensionless
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C2F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c2f = (1-c1f)*(p0-pt)
- long_name :
- Full levels, c2f = (1-c1f)*(p0-pt)
- units :
- Pa
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C2H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c2h = (1-c1h)*(p0-pt)
- long_name :
- Half levels, c2h = (1-c1h)*(p0-pt)
- units :
- Pa
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C3F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c3f = bf
- long_name :
- Full levels, c3f = bf
- units :
- Dimensionless
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C3H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c3h = bh
- long_name :
- Half levels, c3h = bh
- units :
- Dimensionless
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C4F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c4f = (eta-bf)*(p0-pt)+pt, using znw
- long_name :
- Full levels, c4f = (eta-bf)*(p0-pt)+pt, using znw
- units :
- Pa
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C4H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c4h = (eta-bh)*(p0-pt)+pt, using znu
- long_name :
- Half levels, c4h = (eta-bh)*(p0-pt)+pt, using znu
- units :
- Pa
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - CANWAT(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- CANOPY WATER
- grid_mapping :
- crs
- long_name :
- Canopy intercepted water
- units :
- kg m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - CF1()float32...
- description :
- 2nd order extrapolation constant
- long_name :
- 2nd order extrapolation constant
- units :
[1 values with dtype=float32]
- CF2()float32...
- description :
- 2nd order extrapolation constant
- long_name :
- 2nd order extrapolation constant
- units :
[1 values with dtype=float32]
- CF3()float32...
- description :
- 2nd order extrapolation constant
- long_name :
- 2nd order extrapolation constant
- units :
[1 values with dtype=float32]
- CFN()float32...
- description :
- extrapolation constant
- long_name :
- Extrapolation constant
- units :
[1 values with dtype=float32]
- CFN1()float32...
- description :
- extrapolation constant
- long_name :
- Extrapolation constant
- units :
[1 values with dtype=float32]
- CLAT(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- COMPUTATIONAL GRID LATITUDE, SOUTH IS NEGATIVE
- grid_mapping :
- crs
- long_name :
- Computational grid latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - COSALPHA(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- Local cosine of map rotation
- grid_mapping :
- crs
- long_name :
- Local cosine of map rotation
- units :
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - DN(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- d(eta) values between half (mass) levels
- long_name :
- D(eta) values between half (mass) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - DNW(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- d(eta) values between full (w) levels
- long_name :
- D(eta) values between full (w) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - DZS(soil_layers_stag)float32dask.array<chunksize=(4,), meta=np.ndarray>
- description :
- THICKNESSES OF SOIL LAYERS
- long_name :
- Thickness of soil layers
- units :
- m
Array Chunk Bytes 16 B 16 B Shape (4,) (4,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - E(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- Coriolis cosine latitude term
- grid_mapping :
- crs
- long_name :
- Coriolis cosine latitude term
- units :
- s-1
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - F(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- Coriolis sine latitude term
- grid_mapping :
- crs
- long_name :
- Coriolis sine latitude term
- units :
- s-1
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - FNM(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- upper weight for vertical stretching
- grid_mapping :
- crs
- long_name :
- Upper weight for vertical stretching
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - FNP(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- lower weight for vertical stretching
- long_name :
- Lower weight for vertical stretching
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - GRAUPEL_ACC_NC(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- ACCUMULATED GRAUPEL WATER EQUIVALENT OVER prec_acc_dt PERIODS OF TIME
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated graupel water equivalent
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- Terrain Height
- grid_mapping :
- crs
- long_name :
- Terrain Height
- units :
- m
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - ISLTYP(y, x)int32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- DOMINANT SOIL CATEGORY
- flag_meanings :
- sand loamy_sand sand_loam silt_loam silt loam sandy_clay_loam silty_clay_loam clay_loam sandy_clay silty_clay clay organic_material water bedrock other_land-ice
- flag_values :
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- grid_mapping :
- crs
- long_name :
- Dominant soil category
- units :
- valid_range :
- 1, 16
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type int32 numpy.ndarray - IVGTYP(y, x)int32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- DOMINANT VEGETATION CATEGORY
- flag_meanings :
- evergreen_needleleaf_forest evergreen_broadleaf_forest deciduous_needleleaf_forest deciduous_broadleaf_forest mixed_forests closed_shrublands open_shrublands woody_savannas savannas grasslands permanent_wetlands croplands urban_and_built-up cropland-natural_vegetation_mosaic snow_and_ice barren_or_sparsely_vegetated water wooded_tundra mixed_tundra barren_tundra
- flag_values :
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- grid_mapping :
- crs
- long_name :
- Dominant vegetation category
- units :
- valid_range :
- 1, 20
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type int32 numpy.ndarray - LAKEMASK(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- LAKE MASK (1 FOR LAKE, 0 FOR NON-LAKE)
- flag_meanings :
- non-lake lake
- flag_values :
- 0.0, 1.0
- grid_mapping :
- crs
- long_name :
- Lake mask (1 for lake, 0 for non-lake)
- units :
- valid_range :
- 0.0, 1.0
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - LANDMASK(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- LAND MASK (1 FOR LAND, 0 FOR WATER)
- flag_meanings :
- water land
- flag_values :
- 0.0, 1.0
- grid_mapping :
- crs
- long_name :
- Land mask (1 for land, 0 for water)
- units :
- valid_range :
- 0.0, 1.0
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - LU_INDEX(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- LAND USE CATEGORY
- flag_meanings :
- evergreen_needleleaf_forest evergreen_broadleaf_forest deciduous_needleleaf_forest deciduous_broadleaf_forest mixed_forests closed_shrublands open_shrublands woody_savannas savannas grasslands permanent_wetlands croplands urban_and_built-up cropland-natural_vegetation_mosaic snow_and_ice barren_or_sparsely_vegetated water wooded_tundra mixed_tundra barren_tundra
- flag_values :
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- grid_mapping :
- crs
- long_name :
- Land use category
- units :
- valid_range :
- 1, 20
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_M(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- Map scale factor on mass grid
- grid_mapping :
- crs
- long_name :
- Map scale factor on mass grid
- units :
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_MX(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- Map scale factor on mass grid, x direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on mass grid, x direction
- units :
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_MY(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- Map scale factor on mass grid, y direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on mass grid, y direction
- units :
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_U(y, x_stag)float32dask.array<chunksize=(350, 175), meta=np.ndarray>
- description :
- Map scale factor on u-grid
- grid_mapping :
- crs
- long_name :
- Map scale factor on u-grid
- units :
Array Chunk Bytes 5.30 MiB 239.26 kiB Shape (1015, 1368) (350, 175) Dask graph 24 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_UX(y, x_stag)float32dask.array<chunksize=(350, 175), meta=np.ndarray>
- description :
- Map scale factor on u-grid, x direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on u-grid, x direction
- units :
Array Chunk Bytes 5.30 MiB 239.26 kiB Shape (1015, 1368) (350, 175) Dask graph 24 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_UY(y, x_stag)float32dask.array<chunksize=(350, 175), meta=np.ndarray>
- description :
- Map scale factor on u-grid, y direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on u-grid, y direction
- units :
Array Chunk Bytes 5.30 MiB 239.26 kiB Shape (1015, 1368) (350, 175) Dask graph 24 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_V(y_stag, x)float32dask.array<chunksize=(175, 350), meta=np.ndarray>
- description :
- Map scale factor on v-grid
- grid_mapping :
- crs
- long_name :
- Map scale factor on v-grid
- units :
Array Chunk Bytes 5.30 MiB 239.26 kiB Shape (1016, 1367) (175, 350) Dask graph 24 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_VX(y_stag, x)float32dask.array<chunksize=(175, 350), meta=np.ndarray>
- description :
- Map scale factor on v-grid, x direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on v-grid, x direction
- units :
Array Chunk Bytes 5.30 MiB 239.26 kiB Shape (1016, 1367) (175, 350) Dask graph 24 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_VY(y_stag, x)float32dask.array<chunksize=(175, 350), meta=np.ndarray>
- description :
- Map scale factor on v-grid, y direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on v-grid, y direction
- units :
Array Chunk Bytes 5.30 MiB 239.26 kiB Shape (1016, 1367) (175, 350) Dask graph 24 chunks in 2 graph layers Data type float32 numpy.ndarray - MAX_MSTFX()float32...
- description :
- Max map factor in domain
- long_name :
- Maximum map factor in domain
- units :
[1 values with dtype=float32]
- MAX_MSTFY()float32...
- description :
- Max map factor in domain
- long_name :
- Maximum map factor in domain
- units :
[1 values with dtype=float32]
- MF_VX_INV(y_stag, x)float32dask.array<chunksize=(175, 350), meta=np.ndarray>
- description :
- Inverse map scale factor on v-grid, x direction
- grid_mapping :
- crs
- long_name :
- Inverse map scale factor on v-grid, x direction
- units :
Array Chunk Bytes 5.30 MiB 239.26 kiB Shape (1016, 1367) (175, 350) Dask graph 24 chunks in 2 graph layers Data type float32 numpy.ndarray - MLCAPE(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- MIXED-LAYER CAPE
- grid_mapping :
- crs
- long_name :
- Mixed-layer convective available potential energy (CAPE)
- units :
- J kg-1
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - MUB(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- base state dry air mass in column
- grid_mapping :
- crs
- long_name :
- Base state dry air mass in column
- units :
- Pa
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - P00()float32...
- description :
- BASE STATE PRESURE
- long_name :
- Base state pressure
- units :
- Pa
[1 values with dtype=float32]
- PB(bottom_top, y, x)float32dask.array<chunksize=(50, 350, 350), meta=np.ndarray>
- description :
- BASE STATE PRESSURE
- grid_mapping :
- crs
- long_name :
- Base state pressure
- units :
- Pa
Array Chunk Bytes 264.65 MiB 23.37 MiB Shape (50, 1015, 1367) (50, 350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - PBLH(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- PBL HEIGHT
- grid_mapping :
- crs
- long_name :
- Planetary boundary layer height
- units :
- m
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - PHB(bottom_top_stag, y, x)float32dask.array<chunksize=(51, 350, 350), meta=np.ndarray>
- description :
- base-state geopotential
- grid_mapping :
- crs
- long_name :
- Base-state geopotential
- units :
- m2 s-2
Array Chunk Bytes 269.94 MiB 23.83 MiB Shape (51, 1015, 1367) (51, 350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - PREC_ACC_NC(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- ACCUMULATED GRID SCALE PRECIPITATION OVER prec_acc_dt PERIODS OF TIME
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated grid scale precipitation
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - PSFC(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- SFC PRESSURE
- grid_mapping :
- crs
- long_name :
- Surface pressure
- units :
- Pa
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - PWAT(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- Precipitable Water
- grid_mapping :
- crs
- units :
- meters
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - P_STRAT()float32...
- description :
- BASE STATE PRESSURE AT BOTTOM OF STRATOSPHERE
- long_name :
- Base state pressure at bottom of stratosphere
- units :
- Pa
[1 values with dtype=float32]
- P_TOP()float32...
- description :
- PRESSURE TOP OF THE MODEL
- long_name :
- Pressure top of the model
- units :
- Pa
[1 values with dtype=float32]
- Q2(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- QV at 2 M
- grid_mapping :
- crs
- long_name :
- Water vapor mixing ratio at 2 meters
- units :
- kg kg-1
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - QRFS(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- sum baseflow
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated baseflow
- units :
- m
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - QSLAT(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- sum lateral flow
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated groundwater lateral flow
- units :
- m
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - QSPRINGS(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- sum seeping water
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated seeping water
- units :
- m
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - QVAPOR(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- Water vapor mixing ratio
- grid_mapping :
- crs
- long_name :
- Water vapor mixing ratio
- units :
- kg kg-1
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - RDN(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- inverse d(eta) values between half (mass) levels
- long_name :
- Inverse d(eta) values between half (mass) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - RDNW(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- inverse d(eta) values between full (w) levels
- long_name :
- Inverse d(eta) values between full (w) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - RDX()float32...
- description :
- INVERSE X GRID LENGTH
- long_name :
- Inverse X grid length
- units :
- m-1
[1 values with dtype=float32]
- RDY()float32...
- description :
- INVERSE Y GRID LENGTH
- long_name :
- Inverse Y grid length
- units :
- m-1
[1 values with dtype=float32]
- RECH(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- sum water table recharge
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated water table recharge
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - SH2O(time, soil_layers_stag, y, x)float32dask.array<chunksize=(36, 4, 350, 350), meta=np.ndarray>
- description :
- SOIL LIQUID WATER
- grid_mapping :
- crs
- long_name :
- Soil liquid water
- number_of_significant_digits :
- 5
- units :
- m3 m-3
Array Chunk Bytes 324.75 GiB 67.29 MiB Shape (15707, 4, 1015, 1367) (36, 4, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - SHDMAX(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- ANNUAL MAX VEG FRACTION
- grid_mapping :
- crs
- long_name :
- Annual maximum vegetation fraction
- units :
- 1
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - SHDMIN(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- ANNUAL MIN VEG FRACTION
- grid_mapping :
- crs
- long_name :
- Annual minimum vegetation fraction
- units :
- 1
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - SINALPHA(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- Local sine of map rotation
- grid_mapping :
- crs
- long_name :
- Local sine of map rotation
- units :
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - SMCWTD(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- deep soil moisture
- grid_mapping :
- crs
- long_name :
- Deep soil moisture
- units :
- m3 m-3
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - SMOIS(time, soil_layers_stag, y, x)float32dask.array<chunksize=(36, 4, 350, 350), meta=np.ndarray>
- description :
- SOIL MOISTURE
- grid_mapping :
- crs
- long_name :
- Soil moisture
- number_of_significant_digits :
- 5
- units :
- m3 m-3
Array Chunk Bytes 324.75 GiB 67.29 MiB Shape (15707, 4, 1015, 1367) (36, 4, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - SNICE(time, snow_layers_stag, y, x)float32dask.array<chunksize=(36, 3, 350, 350), meta=np.ndarray>
- description :
- snow layer ice
- grid_mapping :
- crs
- long_name :
- Snow layer ice
- units :
- mm
Array Chunk Bytes 243.56 GiB 50.47 MiB Shape (15707, 3, 1015, 1367) (36, 3, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - SNLIQ(time, snow_layers_stag, y, x)float32dask.array<chunksize=(36, 3, 350, 350), meta=np.ndarray>
- description :
- snow layer liquid
- grid_mapping :
- crs
- long_name :
- Snow layer liquid
- units :
- mm
Array Chunk Bytes 243.56 GiB 50.47 MiB Shape (15707, 3, 1015, 1367) (36, 3, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOALB(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- ANNUAL MAX SNOW ALBEDO IN FRACTION
- grid_mapping :
- crs
- long_name :
- Annual maximum snow albedo in fraction
- units :
- 1
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOW(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- SNOW WATER EQUIVALENT
- grid_mapping :
- crs
- long_name :
- Snow water equivalent
- units :
- kg m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOWC(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- FLAG INDICATING SNOW COVERAGE (1 FOR SNOW COVER)
- grid_mapping :
- crs
- long_name :
- Snow cover fraction
- number_of_significant_digits :
- 5
- units :
- valid_range :
- 0.0, 1.0
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOWENERGY(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- energy content in snow relative to 273.16
- grid_mapping :
- crs
- long_name :
- Energy content in snow relative to 273.16 K
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOWH(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- PHYSICAL SNOW DEPTH
- grid_mapping :
- crs
- long_name :
- Physical snow depth
- number_of_significant_digits :
- 5
- units :
- m
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOW_ACC_NC(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- ACCUMULATED SNOW WATER EQUIVALENT OVER prec_acc_dt PERIODS OF TIME
- grid_mapping :
- crs
- integration_length :
- 24-hour accumulation
- long_name :
- Accumulated snow water equivalent
- units :
- mm
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - SOILENERGY(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- energy content in soil relative to 273.16
- grid_mapping :
- crs
- long_name :
- Energy content in soil relative to 273.16 K
- units :
- kJ m-2
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - SR(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- fraction of frozen precipitation
- grid_mapping :
- crs
- long_name :
- Fraction of frozen precipitation
- number_of_significant_digits :
- 5
- units :
- 1
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - T00()float32...
- description :
- BASE STATE TEMPERATURE
- long_name :
- Base state temperature
- units :
- K
[1 values with dtype=float32]
- T2(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- TEMP at 2 M
- grid_mapping :
- crs
- long_name :
- Temperature at 2 meters
- units :
- K
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - TD2(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- 2-m dewpoint temperature
- grid_mapping :
- crs
- long_name :
- Dewpoint temperature at 2 meters
- units :
- K
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - TISO()float32...
- description :
- TEMP AT WHICH THE BASE T TURNS CONST
- long_name :
- Temperature at which the base perturbation potential temperature turns constant
- units :
- K
[1 values with dtype=float32]
- TK(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- Air temperature at the lowest model level
- grid_mapping :
- crs
- units :
- K
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - TLP()float32...
- description :
- BASE STATE LAPSE RATE
- long_name :
- Base state lapse rate
- units :
[1 values with dtype=float32]
- TLP_STRAT()float32...
- description :
- BASE STATE LAPSE RATE (DT/D(LN(P)) IN STRATOSPHERE
- long_name :
- Base state lapse rate (DT/D(LN(P)) in stratosphere
- units :
- K
[1 values with dtype=float32]
- TRAD(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- surface radiative temperature
- grid_mapping :
- crs
- long_name :
- Surface radiative temperature
- units :
- K
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - TSK(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- SURFACE SKIN TEMPERATURE
- grid_mapping :
- crs
- long_name :
- Surface skin temperature
- units :
- K
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - TSLB(time, soil_layers_stag, y, x)float32dask.array<chunksize=(36, 4, 350, 350), meta=np.ndarray>
- description :
- SOIL TEMPERATURE
- grid_mapping :
- crs
- long_name :
- Soil temperature
- number_of_significant_digits :
- 5
- units :
- K
Array Chunk Bytes 324.75 GiB 67.29 MiB Shape (15707, 4, 1015, 1367) (36, 4, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - TSNO(time, snow_layers_stag, y, x)float32dask.array<chunksize=(36, 3, 350, 350), meta=np.ndarray>
- description :
- snow temperature
- grid_mapping :
- crs
- long_name :
- Snow temperature
- number_of_significant_digits :
- 5
- units :
- K
Array Chunk Bytes 243.56 GiB 50.47 MiB Shape (15707, 3, 1015, 1367) (36, 3, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - TV(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- vegetation leaf temperature
- grid_mapping :
- crs
- long_name :
- Vegetation leaf temperature
- number_of_significant_digits :
- 5
- units :
- K
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - U(time, y, x_stag)float32dask.array<chunksize=(36, 350, 175), meta=np.ndarray>
- description :
- x-wind component
- grid_mapping :
- crs
- long_name :
- U-component of wind with respect to model grid
- units :
- m s-1
Array Chunk Bytes 81.25 GiB 8.41 MiB Shape (15707, 1015, 1368) (36, 350, 175) Dask graph 10488 chunks in 2 graph layers Data type float32 numpy.ndarray - U10(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- U at 10 M
- grid_mapping :
- crs
- long_name :
- U-component of wind at 10 meters with respect to model grid
- units :
- m s-1
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - V(time, y_stag, x)float32dask.array<chunksize=(36, 175, 350), meta=np.ndarray>
- description :
- y-wind component
- grid_mapping :
- crs
- long_name :
- V-component of wind with respect to model grid
- units :
- m s-1
Array Chunk Bytes 81.27 GiB 8.41 MiB Shape (15707, 1016, 1367) (36, 175, 350) Dask graph 10488 chunks in 2 graph layers Data type float32 numpy.ndarray - V10(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- V at 10 M
- grid_mapping :
- crs
- long_name :
- V-component of wind at 10 meters with respect to model grid
- units :
- m s-1
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - VAR(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- OROGRAPHIC VARIANCE
- grid_mapping :
- crs
- long_name :
- Orographic variance
- units :
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - VAR_SSO(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- variance of subgrid-scale orography
- grid_mapping :
- crs
- long_name :
- Variance of subgrid-scale orography
- units :
- m2
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - XLAND(y, x)float32dask.array<chunksize=(350, 350), meta=np.ndarray>
- description :
- LAND MASK (1 FOR LAND, 2 FOR WATER)
- flag_meanings :
- land water
- flag_values :
- 1, 2
- grid_mapping :
- crs
- long_name :
- Land mask (1 for land, 2 for water)
- units :
- valid_range :
- 1.0, 2.0
Array Chunk Bytes 5.29 MiB 478.52 kiB Shape (1015, 1367) (350, 350) Dask graph 12 chunks in 2 graph layers Data type float32 numpy.ndarray - Z(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- Geopotential Height at the lowest model level (PH+PHB)/9.81
- grid_mapping :
- crs
- units :
- meters MSL
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ZETATOP()float32...
- description :
- ZETA AT MODEL TOP
- long_name :
- ZETA at model top
- units :
[1 values with dtype=float32]
- ZNU(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- eta values on half (mass) levels
- long_name :
- Eta values on half (mass) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ZNW(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- eta values on full (w) levels
- long_name :
- Eta values on full (w) levels
- units :
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ZS(soil_layers_stag)float32dask.array<chunksize=(4,), meta=np.ndarray>
- description :
- DEPTHS OF CENTERS OF SOIL LAYERS
- long_name :
- Depths of centers of soil layers
- units :
- m
Array Chunk Bytes 16 B 16 B Shape (4,) (4,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ZSNSO(time, snso_layers_stag, y, x)float32dask.array<chunksize=(36, 7, 350, 350), meta=np.ndarray>
- description :
- layer-bottom depth from snow surf
- grid_mapping :
- crs
- long_name :
- Layer-bottom depth from snow surface
- number_of_significant_digits :
- 5
- units :
- m
Array Chunk Bytes 568.31 GiB 117.76 MiB Shape (15707, 7, 1015, 1367) (36, 7, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - ZWT(time, y, x)float32dask.array<chunksize=(36, 350, 350), meta=np.ndarray>
- description :
- water table depth
- grid_mapping :
- crs
- long_name :
- Water table depth
- number_of_significant_digits :
- 5
- units :
- m
Array Chunk Bytes 81.19 GiB 16.82 MiB Shape (15707, 1015, 1367) (36, 350, 350) Dask graph 5244 chunks in 2 graph layers Data type float32 numpy.ndarray - crs()int64...
- crs_wkt :
- PROJCRS["unknown",BASEGEOGCRS["unknown",DATUM["unknown",ELLIPSOID["unknown",6370000,0,LENGTHUNIT["metre",1,ID["EPSG",9001]]]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8901]]],CONVERSION["unknown",METHOD["Lambert Conic Conformal (2SP)",ID["EPSG",9802]],PARAMETER["Latitude of false origin",39.1000061035156,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8821]],PARAMETER["Longitude of false origin",-97.9000015258789,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8822]],PARAMETER["Latitude of 1st standard parallel",30,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8823]],PARAMETER["Latitude of 2nd standard parallel",50,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8824]],PARAMETER["Easting at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8826]],PARAMETER["Northing at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8827]]],CS[Cartesian,2],AXIS["(E)",east,ORDER[1],LENGTHUNIT["metre",1,ID["EPSG",9001]]],AXIS["(N)",north,ORDER[2],LENGTHUNIT["metre",1,ID["EPSG",9001]]]]
- false_easting :
- 0.0
- false_northing :
- 0.0
- geographic_crs_name :
- unknown
- grid_mapping_name :
- lambert_conformal_conic
- horizontal_datum_name :
- unknown
- inverse_flattening :
- 0.0
- latitude_of_projection_origin :
- 39.100006103515625
- longitude_of_central_meridian :
- -97.9000015258789
- longitude_of_prime_meridian :
- 0.0
- prime_meridian_name :
- Greenwich
- projected_crs_name :
- unknown
- reference_ellipsoid_name :
- unknown
- semi_major_axis :
- 6370000.0
- semi_minor_axis :
- 6370000.0
- standard_parallel :
- [30.0, 50.0]
[1 values with dtype=int64]
- timePandasIndex
PandasIndex(DatetimeIndex(['1979-10-01', '1979-10-02', '1979-10-03', '1979-10-04', '1979-10-05', '1979-10-06', '1979-10-07', '1979-10-08', '1979-10-09', '1979-10-10', ... '2022-09-22', '2022-09-23', '2022-09-24', '2022-09-25', '2022-09-26', '2022-09-27', '2022-09-28', '2022-09-29', '2022-09-30', '2022-10-01'], dtype='datetime64[ns]', name='time', length=15707, freq=None))
- xPandasIndex
PandasIndex(Index([-2732000.0, -2728000.0, -2724000.0, -2720000.0, -2716000.0, -2712000.0, -2708000.0, -2704000.0, -2700000.0, -2696000.0, ... 2696000.0, 2700000.0, 2704000.0, 2708000.0, 2712000.0, 2716000.0, 2720000.0, 2724000.0, 2728000.0, 2732000.0], dtype='float64', name='x', length=1367))
- yPandasIndex
PandasIndex(Index([-2027999.9999999958, -2023999.9999999958, -2019999.9999999958, -2015999.9999999958, -2011999.9999999958, -2007999.9999999958, -2003999.9999999958, -1999999.9999999958, -1995999.9999999958, -1991999.9999999958, ... 1992000.0000000042, 1996000.0000000042, 2000000.0000000042, 2004000.0000000042, 2008000.0000000042, 2012000.0000000042, 2016000.0000000042, 2020000.0000000042, 2024000.0000000042, 2028000.0000000042], dtype='float64', name='y', length=1015))
- AER_ANGEXP_OPT :
- 1
- AER_ANGEXP_VAL :
- 1.2999999523162842
- AER_AOD550_OPT :
- 1
- AER_AOD550_VAL :
- 0.11999999731779099
- AER_ASY_OPT :
- 1
- AER_ASY_VAL :
- 0.8999999761581421
- AER_OPT :
- 1
- AER_SSA_OPT :
- 1
- AER_SSA_VAL :
- 0.8500000238418579
- AER_TYPE :
- 1
- BLDT :
- 0.0
- BL_PBL_PHYSICS :
- 1
- BOTTOM-TOP_GRID_DIMENSION :
- 51
- BOTTOM-TOP_PATCH_END_STAG :
- 51
- BOTTOM-TOP_PATCH_END_UNSTAG :
- 50
- BOTTOM-TOP_PATCH_START_STAG :
- 1
- BOTTOM-TOP_PATCH_START_UNSTAG :
- 1
- BUCKET_J :
- 1000000000.0
- BUCKET_MM :
- 100.0
- CEN_LAT :
- 39.100006103515625
- CEN_LON :
- -97.89999389648438
- CUDT :
- 5.0
- CU_PHYSICS :
- 0
- Contacts :
- CHANGHAI LIU (chliu@ucar.edu), KYOKO IKEDA (kyoko@ucar.edu)
- DAMPCOEF :
- 0.20000000298023224
- DAMP_OPT :
- 3
- DFI_OPT :
- 0
- DIFF_6TH_FACTOR :
- 0.11999999731779099
- DIFF_6TH_OPT :
- 0
- DIFF_OPT :
- 2
- DT :
- 20.0
- DTRAMP_MIN :
- 60.0
- DVEG :
- 9
- DX :
- 4000.0
- DY :
- 4000.0
- Division :
- NCAR/RAL/HAP
- ETAC :
- 0.0
- FEEDBACK :
- 1
- FGDT :
- 2.0
- FileGenerated :
- 20210204
- GFDDA_END_H :
- 999999
- GFDDA_INTERVAL_M :
- 180
- GMT :
- 0.0
- GPH :
- 4.999999873689376e-05
- GRAV_SETTLING :
- 0
- GRIDTYPE :
- C
- GRID_FDDA :
- 2
- GRID_ID :
- 1
- GRID_SFDDA :
- 0
- GT :
- 4.999999873689376e-05
- GUV :
- 4.999999873689376e-05
- GWD_OPT :
- 0
- HYBRID_OPT :
- -1
- HYPSOMETRIC_OPT :
- 2
- ICLOUD :
- 1
- ICLOUD_CU :
- 0
- IF_RAMPING :
- 1
- ISFFLX :
- 1
- ISFTCFLX :
- 0
- ISHALLOW :
- 0
- ISICE :
- 15
- ISLAKE :
- 21
- ISOILWATER :
- 14
- ISURBAN :
- 13
- ISWATER :
- 17
- I_PARENT_START :
- 1
- JULDAY :
- 274
- JULYR :
- 1979
- J_PARENT_START :
- 1
- KHDIF :
- 0.0
- KM_OPT :
- 4
- KVDIF :
- 0.0
- MAP_PROJ :
- 1
- MAP_PROJ_CHAR :
- Lambert Conformal
- MFSHCONV :
- 0
- MMINLU :
- MODIFIED_IGBP_MODIS_NOAH
- MOAD_CEN_LAT :
- 39.100006103515625
- MOIST_ADV_OPT :
- 1
- MP_PHYSICS :
- 8
- NCO :
- netCDF Operators version 4.9.5 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
- NUM_LAND_CAT :
- 21
- OBS_NUDGE_OPT :
- 0
- OPT_ALB :
- 2
- OPT_BTR :
- 2
- OPT_CRS :
- 1
- OPT_FRZ :
- 1
- OPT_GLA :
- 1
- OPT_INF :
- 1
- OPT_RAD :
- 3
- OPT_RSF :
- 1
- OPT_RUN :
- 5
- OPT_SFC :
- 1
- OPT_SNF :
- 4
- OPT_STC :
- 3
- OPT_TBOT :
- 1
- PARENT_GRID_RATIO :
- 1
- PARENT_ID :
- 0
- POLE_LAT :
- 90.0
- POLE_LON :
- 0.0
- PREC_ACC_DT :
- 60.0
- Project :
- USGS CONUS404
- RADT :
- 5.0
- RA_LW_PHYSICS :
- 4
- RA_SW_PHYSICS :
- 4
- SCALAR_ADV_OPT :
- 1
- SCALAR_PBLMIX :
- 0
- SF_LAKE_PHYSICS :
- 0
- SF_OCEAN_PHYSICS :
- 0
- SF_SFCLAY_PHYSICS :
- 1
- SF_SURFACE_PHYSICS :
- 4
- SF_URBAN_PHYSICS :
- 0
- SGFDDA_END_H :
- 0
- SGFDDA_INTERVAL_M :
- 0
- SHCU_PHYSICS :
- 0
- SIMULATION_INITIALIZATION_TYPE :
- REAL-DATA CASE
- SIMULATION_START_DATE :
- 1979-10-01_00:00:00
- SKEBS_ON :
- 0
- SMOOTH_OPTION :
- 2
- SOUTH-NORTH_GRID_DIMENSION :
- 1016
- SOUTH-NORTH_PATCH_END_STAG :
- 1016
- SOUTH-NORTH_PATCH_END_UNSTAG :
- 1015
- SOUTH-NORTH_PATCH_START_STAG :
- 1
- SOUTH-NORTH_PATCH_START_UNSTAG :
- 1
- SPEC_BDY_FINAL_MU :
- 1
- SST_UPDATE :
- 1
- STAND_LON :
- -97.9000015258789
- START_DATE :
- 1979-10-01_00:00:00
- SURFACE_INPUT_SOURCE :
- 1
- SWINT_OPT :
- 0
- SWRAD_SCAT :
- 1.0
- Source_Code :
- make_conusii_2d.csh
- TITLE :
- OUTPUT FROM WRF V3.9.1.1 MODEL
- TKE_ADV_OPT :
- 1
- TOPO_WIND :
- 1
- TRACER_PBLMIX :
- 1
- TRUELAT1 :
- 30.0
- TRUELAT2 :
- 50.0
- USE_Q_DIABATIC :
- 0
- USE_THETA_M :
- 0
- WEST-EAST_GRID_DIMENSION :
- 1368
- WEST-EAST_PATCH_END_STAG :
- 1368
- WEST-EAST_PATCH_END_UNSTAG :
- 1367
- WEST-EAST_PATCH_START_STAG :
- 1
- WEST-EAST_PATCH_START_UNSTAG :
- 1
- W_DAMPING :
- 1
- YSU_TOPDOWN_PBLMIX :
- 0
- history :
- Tue Mar 29 16:35:22 2022: ncrcat -A -vW /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_W_d01_1979-10-01_00:00:00.nc /glade/scratch/kyoko/USGS/conus404_production_outputs/OUTPUT/WY1980/wrf2d_d01_1979-10-01_00:00:00 Tue Mar 29 16:35:21 2022: ncrcat -A -vZ /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_Z_d01_1979-10-01_00:00:00.nc /glade/scratch/kyoko/USGS/conus404_production_outputs/OUTPUT/WY1980/wrf2d_d01_1979-10-01_00:00:00
- history_of_appended_files :
- Tue Mar 29 16:35:22 2022: Appended file /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_W_d01_1979-10-01_00:00:00.nc had no "history" attribute Tue Mar 29 16:35:21 2022: Appended file /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_Z_d01_1979-10-01_00:00:00.nc had no "history" attribute
Parallelize with Dask (optional)#
Some of the steps we will take are aware of parallel clustered compute environments using dask
. We can start a cluster now so that future steps take advantage
of this ability. This is an optional step, but speed ups data loading significantly, especially when accessing data from the cloud.
We have documentation on how to start a Dask Cluster in different computing environments here. Uncomment the cluster start up that works for your compute environment.
%run ../environment_set_up/Start_Dask_Cluster_Nebari.ipynb
## If this notebook is not being run on Nebari/ESIP, replace the above
## path name with a helper appropriate to your compute environment. Examples:
# %run ../environment_set_up/Start_Dask_Cluster_Denali.ipynb
# %run ../environment_set_up/Start_Dask_Cluster_Tallgrass.ipynb
# %run ../environment_set_up/Start_Dask_Cluster_Desktop.ipynb
# %run ../environment_set_up/Start_Dask_Cluster_PangeoCHS.ipynb
The 'cluster' object can be used to adjust cluster behavior. i.e. 'cluster.adapt(minimum=10)'
The 'client' object can be used to directly interact with the cluster. i.e. 'client.submit(func)'
The link to view the client dashboard is:
> https://hytestnebari.dev-wma.chs.usgs.gov/gateway/clusters/dev.c676ff22d4694540af65a7193eaf2d4d/status
Load the Feature Polygons#
Now that we have read in the CONUS404 data, we need to read in some polygons to aggregate the data. For this example, we will use the HUC12 basins within the Delaware River Basin. To get these HUC12 polygons, we can use pygeohydro.watershed
to query the Hydro Network Linked Data Index (NLDI). All we need to get the basins is the general IDs of the HUC12 basins. For the Delaware Basin those are ones that start with 020401 or 020402.
%%time
wbd = watershed.WBD("huc4")
delaware_basin = wbd.byids(field="huc4", fids="0204")
huc12_basins = WaterData('wbd12').bygeom(delaware_basin.iloc[0].geometry)
huc12_basins = huc12_basins[huc12_basins['huc12'].str.startswith(('020401', '020402'))]
huc12_basins
CPU times: user 3.04 s, sys: 204 ms, total: 3.24 s
Wall time: 13.4 s
geometry | tnmid | metasourceid | sourcedatadesc | sourceoriginator | sourcefeatureid | loaddate | gnis_id | areaacres | areasqkm | states | huc12 | name | hutype | humod | tohuc | noncontributingareaacres | noncontributingareasqkm | globalid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | MULTIPOLYGON (((-75.02421 39.44397, -75.02353 ... | {001055CD-7B5E-4F96-ABB1-22923FD2B454} | None | None | None | None | 2013-01-18T07:08:41Z | None | 16178.10 | 65.47 | NJ | 020402060505 | White Marsh Run-Maurice River | S | NM | 020402060507 | 0 | 0 | {A70A97FA-E29C-11E2-8094-0021280458E6} |
1 | MULTIPOLYGON (((-74.62113 41.00565, -74.62139 ... | {009DA440-393A-46A0-BBA3-C38139823414} | {ED602145-9201-4827-9CE1-05D252484579} | None | None | None | 2017-10-03T20:11:06Z | None | 29107.93 | 117.80 | NJ | 020401050502 | Lubbers Run-Musconetcong River | S | NM | 020401050503 | 0 | 0 | {B830B4F8-E29C-11E2-8094-0021280458E6} |
2 | MULTIPOLYGON (((-75.75805 40.65996, -75.75783 ... | {00F73634-FA00-464F-93F0-F0BCCB464567} | {ED602145-9201-4827-9CE1-05D252484579} | None | None | None | 2017-10-03T20:10:58Z | None | 35229.84 | 142.57 | PA | 020402030305 | Upper Maiden Creek | S | NM | 020402030307 | 0 | 0 | {BAF5E77A-E29C-11E2-8094-0021280458E6} |
3 | MULTIPOLYGON (((-75.13279 39.88601, -75.13439 ... | {017B8A58-E959-4600-B212-8EB921F0F9F7} | {E9F5C988-2313-440E-A05E-C5871E2773A6} | None | None | None | 2017-10-03T20:11:04Z | None | 24920.90 | 100.85 | NJ,PA | 020402020507 | Woodbury Creek-Delaware River | S | TF | 020402020607 | 0 | 0 | {B122D6B7-E29C-11E2-8094-0021280458E6} |
4 | MULTIPOLYGON (((-74.92817 40.55256, -74.92833 ... | {01B4598B-0623-407F-9133-3040D99A8D1A} | {ED602145-9201-4827-9CE1-05D252484579} | None | None | None | 2017-10-03T20:10:52Z | None | 15086.80 | 61.05 | NJ | 020401050905 | Lockatong Creek | S | NM | 020401050908 | 0 | 0 | {A6AB04BE-E29C-11E2-8094-0021280458E6} |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
656 | MULTIPOLYGON (((-75.12376 40.12389, -75.12455 ... | {FE1811B2-B495-4065-8624-913739AF724E} | {ED602145-9201-4827-9CE1-05D252484579} | None | None | None | 2017-10-03T20:11:07Z | None | 23146.21 | 93.67 | PA | 020402030902 | Lower Wissahickon Creek | S | NM | 020402031007 | 0 | 0 | {BB87766E-E29C-11E2-8094-0021280458E6} |
659 | MULTIPOLYGON (((-75.75805 40.65996, -75.75893 ... | {FF44E71D-0E10-4CEF-ACB5-A148FCC1D201} | None | None | None | None | 2013-01-18T07:08:53Z | None | 18124.40 | 73.35 | PA | 020402030301 | Ontelaunee Creek | S | NM | 020402030305 | 0 | 0 | {BAD53EAD-E29C-11E2-8094-0021280458E6} |
660 | MULTIPOLYGON (((-75.19691 40.5796, -75.19719 4... | {FF630558-25A7-462F-9E12-F4166478902C} | {ED602145-9201-4827-9CE1-05D252484579} | None | None | None | 2017-10-03T20:10:58Z | None | 18929.21 | 76.60 | PA | 020401050604 | Cooks Creek | S | NM | 020401050605 | 0 | 0 | {BA28799D-E29C-11E2-8094-0021280458E6} |
661 | MULTIPOLYGON (((-75.53503 39.11019, -75.53441 ... | {FF6AB0DD-4B75-40D8-81D9-7AC2F0ACE65E} | None | None | None | None | 2013-01-18T07:08:10Z | None | 6290.20 | 25.46 | DE | 020402070303 | Tidbury Creek | S | NM | 020402070304 | 0 | 0 | {963110E8-E29C-11E2-8094-0021280458E6} |
662 | MULTIPOLYGON (((-74.85144 41.01532, -74.8516 4... | {FF9C7C31-4BE0-426E-9CEA-FC14A0F526C7} | {ED602145-9201-4827-9CE1-05D252484579} | None | None | None | 2017-10-03T20:10:56Z | None | 21760.30 | 88.06 | NJ | 020401050103 | Middle Paulins Kill | S | NM | 020401050104 | 0 | 0 | {B82FC756-E29C-11E2-8094-0021280458E6} |
427 rows × 19 columns
Let’s plot the HUC12 basins to see how they look.
huc12_basins.hvplot(
c='huc12', title="Delaware River HUC12 basins",
coastline='50m', geo=True,
aspect='equal', legend=False, frame_width=300
)
/home/conda/global/75e44cfd-1739550182-21-pangeo/lib/python3.11/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/50m_physical/ne_50m_coastline.zip
warnings.warn(f'Downloading: {url}', DownloadWarning)