Water Mission Area STAC Catalog#
The USGS Water Resources Mission Area (WMA) has created a STAC Catalog to help users find and access data related to our water modeling projects. STAC Catalogs provide a mechanism to expose spatiotemporal datasets using a machine-readable format, allowing users to discover and access datasets in a standardized way. The WMA Catalog hosts a variety of datasets related to hydro-terrestrial modeling. The scope of the WMA STAC Catalog datasets may include:
common hydrologic model inputs such as climate or other forcing datasets
hydrologic model outputs
observational datasets related to hydrology and/or water budgets
We have exposed our STAC Catalog through a pygeoapi endpoint that is compliant with the OGC API suite of standards. This endpoint allows both API access, as well as a user interface for browsing our data assets.
This STAC Catalog is part of a modernized replacement for the legacy Geo Data Portal.
Finding the data you need and reading it into your workflow#
You have two ways to discover the data assets in the WMA STAC Catalog:
Using the pygeoapi user interface to browse our datasets through a user interface.
Reading the pygeoapi API endpoint into a workflow using a library designed for reading STAC catalogs, such as PySTAC.
We will describe/demonstrate both methods below.
# first import the packages we will need
import pystac
import xarray as xr
import zarr
from packaging.version import Version
Option 1: Find and access a dataset using the PyGEOAPI or Radiant Earth user interface#
Step 1: Explore the catalog through either our pygeoapi user interface or the Radiant Earth STAC Browser and find the dataset you want to use.
This catalog contains both datasets and collections of datasets in the top level of the catalog. Therefore, some assets that you click may open up directly to a dataset explore page (with a map viewer and metadata about the dataset), while others will open up to another catalog listing. As you drill down through the collections, you will eventually land on a dataset explore page.
You can learn more about each dataset at its source publication point, which is linked in the
cite-asproperty displayed on each dataset page (if available).Click through the catalog until you find a dataset that you want to use. For this example, we will use the gridMET dataset.
Step 2: Identify which asset you want to use to access the dataset you’ve chosen.
Review the
TitleandDescriptionof each asset listed in the Assets section. Each asset is a different copy of the dataset that may be stored in a different format or location.Typically, we recommend using the asset with the title “Free access to zarr via S3 API”.
Copy the
URL,Open Keywords, andStorage Optionsfor the asset you have chosen, and store them as python variables, demonstrated below:
# URL
zarr_url = 's3://hytest/conus404/conus404_hourly.zarr/'
# Open Keywords
# note that you will need to capitalize the True or False in "consolidated" - these keys are stored as lowercase boolens in the STAC catalog json
# but should be capitalized for python
open_keywords = {
"chunks": {},
"consolidated": True,
"engine": "zarr"
}
# Storage Options
# note that you will need to capitalize the True or False in "anon" - these keys are stored as lowercase boolens in the STAC catalog json
# but should be capitalized for python
storage_options = {
"anon": True,
"client_kwargs": {
"endpoint_url": "https://usgs.osn.mghpcc.org/"
}
}
Open the dataset using xarray#
Now we will open and view the dataset using xarray.
Please note that there are two major zarr format specifications: 2 and 3. If you are using the python package zarr>=3.0.0, you must specify the format of the zarr store you are trying to open in the xarray.open_dataset function. If you are using zarr<3.0.0, you do not need to specify the format, as it will default to version 2.
if Version(zarr.__version__) < Version("3.0.0"):
ds = xr.open_dataset(
zarr_url,
storage_options=storage_options,
**open_keywords
)
else:
ds = xr.open_dataset(
zarr_url,
storage_options=storage_options,
**open_keywords,
zarr_format=2
)
ds
<xarray.Dataset> Size: 222TB
Dimensions: (time: 376945, y: 1015, x: 1367, bottom_top_stag: 51,
bottom_top: 50, soil_layers_stag: 4, x_stag: 1368,
y_stag: 1016, snow_layers_stag: 3, snso_layers_stag: 7)
Coordinates:
lat (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
lat_u (y, x_stag) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
lat_v (y_stag, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
lon (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
lon_u (y, x_stag) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
lon_v (y_stag, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
* time (time) datetime64[ns] 3MB 1979-10-01 ... 2022-10-01
* x (x) float64 11kB -2.732e+06 -2.728e+06 ... 2.732e+06
* y (y) float64 8kB -2.028e+06 -2.024e+06 ... 2.028e+06
Dimensions without coordinates: bottom_top_stag, bottom_top, soil_layers_stag,
x_stag, y_stag, snow_layers_stag,
snso_layers_stag
Data variables: (12/153)
ACDEWC (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
ACDRIPR (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
ACDRIPS (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
ACECAN (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
ACEDIR (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
ACETLSM (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
... ...
ZNU (bottom_top) float32 200B dask.array<chunksize=(50,), meta=np.ndarray>
ZNW (bottom_top_stag) float32 204B dask.array<chunksize=(51,), meta=np.ndarray>
ZS (soil_layers_stag) float32 16B dask.array<chunksize=(4,), meta=np.ndarray>
ZSNSO (time, snso_layers_stag, y, x) float32 15TB dask.array<chunksize=(144, 7, 175, 175), meta=np.ndarray>
ZWT (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
crs int64 8B ...
Attributes: (12/148)
AER_ANGEXP_OPT: 1
AER_ANGEXP_VAL: 1.2999999523162842
AER_AOD550_OPT: 1
AER_AOD550_VAL: 0.11999999731779099
AER_ASY_OPT: 1
AER_ASY_VAL: 0.8999999761581421
... ...
WEST-EAST_PATCH_START_STAG: 1
WEST-EAST_PATCH_START_UNSTAG: 1
W_DAMPING: 1
YSU_TOPDOWN_PBLMIX: 0
history: Tue Mar 29 16:35:22 2022: ncrcat -A -vW ...
history_of_appended_files: Tue Mar 29 16:35:22 2022: Appended file ...- time: 376945
- y: 1015
- x: 1367
- bottom_top_stag: 51
- bottom_top: 50
- soil_layers_stag: 4
- x_stag: 1368
- y_stag: 1016
- snow_layers_stag: 3
- snso_layers_stag: 7
- lat(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - lat_u(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - lat_v(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - lon(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - lon_u(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - lon_v(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - time(time)datetime64[ns]1979-10-01 ... 2022-10-01
- axis :
- T
- description :
- time
- long_name :
- time
- standard_name :
- time
array(['1979-10-01T00:00:00.000000000', '1979-10-01T01:00:00.000000000', '1979-10-01T02:00:00.000000000', ..., '2022-09-30T22:00:00.000000000', '2022-09-30T23:00:00.000000000', '2022-10-01T00:00:00.000000000'], shape=(376945,), dtype='datetime64[ns]') - x(x)float64-2.732e+06 -2.728e+06 ... 2.732e+06
- long_name :
- x coordinate of projection
- standard_name :
- projection_x_coordinate
- units :
- m
array([-2732000., -2728000., -2724000., ..., 2724000., 2728000., 2732000.], shape=(1367,)) - y(y)float64-2.028e+06 -2.024e+06 ... 2.028e+06
- long_name :
- y coordinate of projection
- standard_name :
- projection_y_coordinate
- units :
- m
array([-2028000., -2024000., -2020000., ..., 2020000., 2024000., 2028000.], shape=(1015,))
- ACDEWC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QDEWC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy dew rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACDRIPR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QDRIPR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy precipitation drip rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACDRIPS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QDRIPS
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow drip rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACECAN(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated ECAN
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated net evaporation of canopy water (evap + sublim - dew - frost)
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEDIR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated EDIR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated net soil evaporation or snowpack sublimation (evap or sublim - dew or frost)
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACETLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated ET
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated total evaporation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACETRAN(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated ETRAN
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated plant transpiration
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVAC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QEVAC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy evaporation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated EVB
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated latent heat flux over bare ground
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated EVC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated latent heat flux for canopy layer
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVG(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated EVG
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated ground latent heat flux below canopy
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACFROC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QFROC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy frost
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACFRZC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QFRZC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated refreezing of canopy liquid water
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACGHB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated GHB
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated heat flux into soil or snowpack for bare ground
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACGHFLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated total ground heat flux
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated total ground heat flux into soil or snowpack
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACGHV(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated GHV
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated heat flux into soil or snowpack under canopy
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACINTR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QINTR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy rain interception rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACINTS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QINTS
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow interception rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACLHFLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated total latent heat flux
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated total latent heat flux
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACLWDNB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED DOWNWELLING LONGWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated downwelling longwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACLWUPB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED UPWELLING LONGWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated upwelling longwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACMELTC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QMELTC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow melt
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACPONDING(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated PONDING
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated surface ponding from complete pack melt
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACQLAT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- accumulated lateral flow
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated groundwater lateral flow
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACQRF(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- accumulated baseflow
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated groundwater baseflow
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRAINLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated RAINLSM
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated liquid precipitation into land surface model
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRAINSNOW(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated rain on snow pack
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated rain on snow pack
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRUNSB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated RUNSB
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated subsurface runoff
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRUNSF(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated RUNSF
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated surface runoff
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSHFLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated total sensible heat flux
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated total sensible heat flux
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNBOT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QSNBOT
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated liquid water flux out of bottom of snowpack
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNFRO(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QSNFRO
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated snowpack frost
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNOM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED MELTED SNOW
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated total liquid water out of the snowpack
- units :
- kg m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNOWLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated SNOWLSM
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated frozen precipitation into land surface model
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNSUB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QSNSUB
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated snowpack sublimation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSUBC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QSUBC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow sublimation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWDNB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED DOWNWELLING SHORTWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated downwelling shortwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWDNLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated SWDN
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated shortwave radiation down at land surface model
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWDNT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED DOWNWELLING SHORTWAVE FLUX AT TOP
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated downwelling shortwave radiation flux at top
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWUPB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED UPWELLING SHORTWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated upwelling shortwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWUPLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated SWUP
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated shortwave radiation up at land surface model
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACTHROR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QTHROR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy rain throughfall
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACTHROS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QTHROS
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow throughfall
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACTR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated TR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated transpiration
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ALBEDO(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ALBEDO
- grid_mapping :
- crs
- long_name :
- Surface albedo including snow effects
- number_of_significant_digits :
- 5
- units :
- 1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - BF(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, bf=0 => isobaric; bf=znw => sigma
- long_name :
- Full levels, bf=0 => isobaric; bf=znw => sigma
- units :
- Dimensionless
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - BH(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, bh=0 => isobaric; bh=znu => sigma
- long_name :
- Half levels, bh=0 => isobaric; bh=znu => sigma
- units :
- Dimensionless
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C1F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c1f = d bf / d eta, using znu
- long_name :
- Full levels, c1f = d bf / d eta, using znu
- units :
- Dimensionless
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C1H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c1h = d bf / d eta, using znw
- long_name :
- Half levels, c1h = d bf / d eta, using znw
- units :
- Dimensionless
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C2F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c2f = (1-c1f)*(p0-pt)
- long_name :
- Full levels, c2f = (1-c1f)*(p0-pt)
- units :
- Pa
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C2H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c2h = (1-c1h)*(p0-pt)
- long_name :
- Half levels, c2h = (1-c1h)*(p0-pt)
- units :
- Pa
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C3F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c3f = bf
- long_name :
- Full levels, c3f = bf
- units :
- Dimensionless
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C3H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c3h = bh
- long_name :
- Half levels, c3h = bh
- units :
- Dimensionless
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C4F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c4f = (eta-bf)*(p0-pt)+pt, using znw
- long_name :
- Full levels, c4f = (eta-bf)*(p0-pt)+pt, using znw
- units :
- Pa
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C4H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c4h = (eta-bh)*(p0-pt)+pt, using znu
- long_name :
- Half levels, c4h = (eta-bh)*(p0-pt)+pt, using znu
- units :
- Pa
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - CANWAT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- CANOPY WATER
- grid_mapping :
- crs
- long_name :
- Canopy intercepted water
- units :
- kg m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - CF1()float32...
- description :
- 2nd order extrapolation constant
- long_name :
- 2nd order extrapolation constant
- units :
[1 values with dtype=float32]
- CF2()float32...
- description :
- 2nd order extrapolation constant
- long_name :
- 2nd order extrapolation constant
- units :
[1 values with dtype=float32]
- CF3()float32...
- description :
- 2nd order extrapolation constant
- long_name :
- 2nd order extrapolation constant
- units :
[1 values with dtype=float32]
- CFN()float32...
- description :
- extrapolation constant
- long_name :
- Extrapolation constant
- units :
[1 values with dtype=float32]
- CFN1()float32...
- description :
- extrapolation constant
- long_name :
- Extrapolation constant
- units :
[1 values with dtype=float32]
- CLAT(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- COMPUTATIONAL GRID LATITUDE, SOUTH IS NEGATIVE
- grid_mapping :
- crs
- long_name :
- Computational grid latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - COSALPHA(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Local cosine of map rotation
- grid_mapping :
- crs
- long_name :
- Local cosine of map rotation
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - DN(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- d(eta) values between half (mass) levels
- long_name :
- D(eta) values between half (mass) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - DNW(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- d(eta) values between full (w) levels
- long_name :
- D(eta) values between full (w) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - DZS(soil_layers_stag)float32dask.array<chunksize=(4,), meta=np.ndarray>
- description :
- THICKNESSES OF SOIL LAYERS
- long_name :
- Thickness of soil layers
- units :
- m
Array Chunk Bytes 16 B 16 B Shape (4,) (4,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - E(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Coriolis cosine latitude term
- grid_mapping :
- crs
- long_name :
- Coriolis cosine latitude term
- units :
- s-1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - F(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Coriolis sine latitude term
- grid_mapping :
- crs
- long_name :
- Coriolis sine latitude term
- units :
- s-1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - FNM(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- upper weight for vertical stretching
- grid_mapping :
- crs
- long_name :
- Upper weight for vertical stretching
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - FNP(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- lower weight for vertical stretching
- long_name :
- Lower weight for vertical stretching
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - GRAUPEL_ACC_NC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED GRAUPEL WATER EQUIVALENT OVER prec_acc_dt PERIODS OF TIME
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated graupel water equivalent
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Terrain Height
- grid_mapping :
- crs
- long_name :
- Terrain Height
- units :
- m
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - ISLTYP(y, x)int32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- DOMINANT SOIL CATEGORY
- flag_meanings :
- sand loamy_sand sand_loam silt_loam silt loam sandy_clay_loam silty_clay_loam clay_loam sandy_clay silty_clay clay organic_material water bedrock other_land-ice
- flag_values :
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- grid_mapping :
- crs
- long_name :
- Dominant soil category
- units :
- valid_range :
- 1, 16
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type int32 numpy.ndarray - IVGTYP(y, x)int32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- DOMINANT VEGETATION CATEGORY
- flag_meanings :
- evergreen_needleleaf_forest evergreen_broadleaf_forest deciduous_needleleaf_forest deciduous_broadleaf_forest mixed_forests closed_shrublands open_shrublands woody_savannas savannas grasslands permanent_wetlands croplands urban_and_built-up cropland-natural_vegetation_mosaic snow_and_ice barren_or_sparsely_vegetated water wooded_tundra mixed_tundra barren_tundra
- flag_values :
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- grid_mapping :
- crs
- long_name :
- Dominant vegetation category
- units :
- valid_range :
- 1, 20
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type int32 numpy.ndarray - LAKEMASK(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LAKE MASK (1 FOR LAKE, 0 FOR NON-LAKE)
- flag_meanings :
- non-lake lake
- flag_values :
- 0.0, 1.0
- grid_mapping :
- crs
- long_name :
- Lake mask (1 for lake, 0 for non-lake)
- units :
- valid_range :
- 0.0, 1.0
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - LANDMASK(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LAND MASK (1 FOR LAND, 0 FOR WATER)
- flag_meanings :
- water land
- flag_values :
- 0.0, 1.0
- grid_mapping :
- crs
- long_name :
- Land mask (1 for land, 0 for water)
- units :
- valid_range :
- 0.0, 1.0
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - LU_INDEX(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LAND USE CATEGORY
- flag_meanings :
- evergreen_needleleaf_forest evergreen_broadleaf_forest deciduous_needleleaf_forest deciduous_broadleaf_forest mixed_forests closed_shrublands open_shrublands woody_savannas savannas grasslands permanent_wetlands croplands urban_and_built-up cropland-natural_vegetation_mosaic snow_and_ice barren_or_sparsely_vegetated water wooded_tundra mixed_tundra barren_tundra
- flag_values :
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- grid_mapping :
- crs
- long_name :
- Land use category
- units :
- valid_range :
- 1, 20
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_M(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on mass grid
- grid_mapping :
- crs
- long_name :
- Map scale factor on mass grid
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_MX(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on mass grid, x direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on mass grid, x direction
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_MY(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on mass grid, y direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on mass grid, y direction
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_U(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on u-grid
- grid_mapping :
- crs
- long_name :
- Map scale factor on u-grid
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_UX(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on u-grid, x direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on u-grid, x direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_UY(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on u-grid, y direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on u-grid, y direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_V(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on v-grid
- grid_mapping :
- crs
- long_name :
- Map scale factor on v-grid
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_VX(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on v-grid, x direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on v-grid, x direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_VY(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on v-grid, y direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on v-grid, y direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAX_MSTFX()float32...
- description :
- Max map factor in domain
- long_name :
- Maximum map factor in domain
- units :
[1 values with dtype=float32]
- MAX_MSTFY()float32...
- description :
- Max map factor in domain
- long_name :
- Maximum map factor in domain
- units :
[1 values with dtype=float32]
- MF_VX_INV(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Inverse map scale factor on v-grid, x direction
- grid_mapping :
- crs
- long_name :
- Inverse map scale factor on v-grid, x direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MLCAPE(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- MIXED-LAYER CAPE
- grid_mapping :
- crs
- long_name :
- Mixed-layer convective available potential energy (CAPE)
- units :
- J kg-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - MUB(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- base state dry air mass in column
- grid_mapping :
- crs
- long_name :
- Base state dry air mass in column
- units :
- Pa
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - P00()float32...
- description :
- BASE STATE PRESURE
- long_name :
- Base state pressure
- units :
- Pa
[1 values with dtype=float32]
- PB(bottom_top, y, x)float32dask.array<chunksize=(50, 175, 175), meta=np.ndarray>
- description :
- BASE STATE PRESSURE
- grid_mapping :
- crs
- long_name :
- Base state pressure
- units :
- Pa
Array Chunk Bytes 264.65 MiB 5.84 MiB Shape (50, 1015, 1367) (50, 175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - PBLH(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- PBL HEIGHT
- grid_mapping :
- crs
- long_name :
- Planetary boundary layer height
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - PHB(bottom_top_stag, y, x)float32dask.array<chunksize=(51, 175, 175), meta=np.ndarray>
- description :
- base-state geopotential
- grid_mapping :
- crs
- long_name :
- Base-state geopotential
- units :
- m2 s-2
Array Chunk Bytes 269.94 MiB 5.96 MiB Shape (51, 1015, 1367) (51, 175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - PREC_ACC_NC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED GRID SCALE PRECIPITATION OVER prec_acc_dt PERIODS OF TIME
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated grid scale precipitation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - PSFC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- SFC PRESSURE
- grid_mapping :
- crs
- long_name :
- Surface pressure
- units :
- Pa
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - PWAT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- Precipitable Water
- units :
- meters
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - P_STRAT()float32...
- description :
- BASE STATE PRESSURE AT BOTTOM OF STRATOSPHERE
- long_name :
- Base state pressure at bottom of stratosphere
- units :
- Pa
[1 values with dtype=float32]
- P_TOP()float32...
- description :
- PRESSURE TOP OF THE MODEL
- long_name :
- Pressure top of the model
- units :
- Pa
[1 values with dtype=float32]
- Q2(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- QV at 2 M
- grid_mapping :
- crs
- long_name :
- Water vapor mixing ratio at 2 meters
- units :
- kg kg-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - QRFS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- sum baseflow
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated baseflow
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - QSLAT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- sum lateral flow
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated groundwater lateral flow
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - QSPRINGS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- sum seeping water
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated seeping water
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - QVAPOR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- Water vapor mixing ratio
- grid_mapping :
- crs
- long_name :
- Water vapor mixing ratio
- units :
- kg kg-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - RDN(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- inverse d(eta) values between half (mass) levels
- long_name :
- Inverse d(eta) values between half (mass) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - RDNW(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- inverse d(eta) values between full (w) levels
- long_name :
- Inverse d(eta) values between full (w) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - RDX()float32...
- description :
- INVERSE X GRID LENGTH
- long_name :
- Inverse X grid length
- units :
- m-1
[1 values with dtype=float32]
- RDY()float32...
- description :
- INVERSE Y GRID LENGTH
- long_name :
- Inverse Y grid length
- units :
- m-1
[1 values with dtype=float32]
- RECH(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- sum water table recharge
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated water table recharge
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SH2O(time, soil_layers_stag, y, x)float32dask.array<chunksize=(144, 4, 175, 175), meta=np.ndarray>
- description :
- SOIL LIQUID WATER
- grid_mapping :
- crs
- long_name :
- Soil liquid water
- number_of_significant_digits :
- 5
- units :
- m3 m-3
Array Chunk Bytes 7.61 TiB 67.29 MiB Shape (376945, 4, 1015, 1367) (144, 4, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SHDMAX(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- ANNUAL MAX VEG FRACTION
- grid_mapping :
- crs
- long_name :
- Annual maximum vegetation fraction
- units :
- 1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - SHDMIN(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- ANNUAL MIN VEG FRACTION
- grid_mapping :
- crs
- long_name :
- Annual minimum vegetation fraction
- units :
- 1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - SINALPHA(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Local sine of map rotation
- grid_mapping :
- crs
- long_name :
- Local sine of map rotation
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - SMCWTD(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- deep soil moisture
- grid_mapping :
- crs
- long_name :
- Deep soil moisture
- units :
- m3 m-3
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SMOIS(time, soil_layers_stag, y, x)float32dask.array<chunksize=(144, 4, 175, 175), meta=np.ndarray>
- description :
- SOIL MOISTURE
- grid_mapping :
- crs
- long_name :
- Soil moisture
- number_of_significant_digits :
- 5
- units :
- m3 m-3
Array Chunk Bytes 7.61 TiB 67.29 MiB Shape (376945, 4, 1015, 1367) (144, 4, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNICE(time, snow_layers_stag, y, x)float32dask.array<chunksize=(144, 3, 175, 175), meta=np.ndarray>
- description :
- snow layer ice
- grid_mapping :
- crs
- long_name :
- Snow layer ice
- units :
- mm
Array Chunk Bytes 5.71 TiB 50.47 MiB Shape (376945, 3, 1015, 1367) (144, 3, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNLIQ(time, snow_layers_stag, y, x)float32dask.array<chunksize=(144, 3, 175, 175), meta=np.ndarray>
- description :
- snow layer liquid
- grid_mapping :
- crs
- long_name :
- Snow layer liquid
- units :
- mm
Array Chunk Bytes 5.71 TiB 50.47 MiB Shape (376945, 3, 1015, 1367) (144, 3, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOALB(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- ANNUAL MAX SNOW ALBEDO IN FRACTION
- grid_mapping :
- crs
- long_name :
- Annual maximum snow albedo in fraction
- units :
- 1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOW(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- SNOW WATER EQUIVALENT
- grid_mapping :
- crs
- long_name :
- Snow water equivalent
- units :
- kg m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOWC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- FLAG INDICATING SNOW COVERAGE (1 FOR SNOW COVER)
- grid_mapping :
- crs
- long_name :
- Snow cover fraction
- number_of_significant_digits :
- 5
- units :
- valid_range :
- 0.0, 1.0
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOWENERGY(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- energy content in snow relative to 273.16
- grid_mapping :
- crs
- long_name :
- Energy content in snow relative to 273.16 K
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOWH(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- PHYSICAL SNOW DEPTH
- grid_mapping :
- crs
- long_name :
- Physical snow depth
- number_of_significant_digits :
- 5
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOW_ACC_NC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED SNOW WATER EQUIVALENT OVER prec_acc_dt PERIODS OF TIME
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated snow water equivalent
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SOILENERGY(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- energy content in soil relative to 273.16
- grid_mapping :
- crs
- long_name :
- Energy content in soil relative to 273.16 K
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- fraction of frozen precipitation
- grid_mapping :
- crs
- long_name :
- Fraction of frozen precipitation
- number_of_significant_digits :
- 5
- units :
- 1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - T00()float32...
- description :
- BASE STATE TEMPERATURE
- long_name :
- Base state temperature
- units :
- K
[1 values with dtype=float32]
- T2(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- TEMP at 2 M
- grid_mapping :
- crs
- long_name :
- Temperature at 2 meters
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TD2(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- 2-m dewpoint temperature
- grid_mapping :
- crs
- long_name :
- Dewpoint temperature at 2 meters
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TISO()float32...
- description :
- TEMP AT WHICH THE BASE T TURNS CONST
- long_name :
- Temperature at which the base perturbation potential temperature turns constant
- units :
- K
[1 values with dtype=float32]
- TK(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- Air temperature at the lowest model level
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TLP()float32...
- description :
- BASE STATE LAPSE RATE
- long_name :
- Base state lapse rate
- units :
[1 values with dtype=float32]
- TLP_STRAT()float32...
- description :
- BASE STATE LAPSE RATE (DT/D(LN(P)) IN STRATOSPHERE
- long_name :
- Base state lapse rate (DT/D(LN(P)) in stratosphere
- units :
- K
[1 values with dtype=float32]
- TRAD(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- surface radiative temperature
- grid_mapping :
- crs
- long_name :
- Surface radiative temperature
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TSK(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- SURFACE SKIN TEMPERATURE
- grid_mapping :
- crs
- long_name :
- Surface skin temperature
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TSLB(time, soil_layers_stag, y, x)float32dask.array<chunksize=(144, 4, 175, 175), meta=np.ndarray>
- description :
- SOIL TEMPERATURE
- grid_mapping :
- crs
- long_name :
- Soil temperature
- number_of_significant_digits :
- 5
- units :
- K
Array Chunk Bytes 7.61 TiB 67.29 MiB Shape (376945, 4, 1015, 1367) (144, 4, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TSNO(time, snow_layers_stag, y, x)float32dask.array<chunksize=(144, 3, 175, 175), meta=np.ndarray>
- description :
- snow temperature
- grid_mapping :
- crs
- long_name :
- Snow temperature
- number_of_significant_digits :
- 5
- units :
- K
Array Chunk Bytes 5.71 TiB 50.47 MiB Shape (376945, 3, 1015, 1367) (144, 3, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TV(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- vegetation leaf temperature
- grid_mapping :
- crs
- long_name :
- Vegetation leaf temperature
- number_of_significant_digits :
- 5
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - U(time, y, x_stag)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- x-wind component
- grid_mapping :
- crs
- long_name :
- U-component of wind with respect to model grid
- units :
- m s-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1368) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - U10(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- U at 10 M
- grid_mapping :
- crs
- long_name :
- U-component of wind at 10 meters with respect to model grid
- units :
- m s-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - V(time, y_stag, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- y-wind component
- grid_mapping :
- crs
- long_name :
- V-component of wind with respect to model grid
- units :
- m s-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1016, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - V10(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- V at 10 M
- grid_mapping :
- crs
- long_name :
- V-component of wind at 10 meters with respect to model grid
- units :
- m s-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - VAR(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- OROGRAPHIC VARIANCE
- grid_mapping :
- crs
- long_name :
- Orographic variance
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - VAR_SSO(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- variance of subgrid-scale orography
- grid_mapping :
- crs
- long_name :
- Variance of subgrid-scale orography
- units :
- m2
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - XLAND(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LAND MASK (1 FOR LAND, 2 FOR WATER)
- flag_meanings :
- land water
- flag_values :
- 1, 2
- grid_mapping :
- crs
- long_name :
- Land mask (1 for land, 2 for water)
- units :
- valid_range :
- 1.0, 2.0
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - Z(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- Geopotential Height at the lowest model level (PH+PHB)/9.81
- units :
- meters MSL
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ZETATOP()float32...
- description :
- ZETA AT MODEL TOP
- long_name :
- ZETA at model top
- units :
[1 values with dtype=float32]
- ZNU(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- eta values on half (mass) levels
- long_name :
- Eta values on half (mass) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ZNW(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- eta values on full (w) levels
- long_name :
- Eta values on full (w) levels
- units :
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ZS(soil_layers_stag)float32dask.array<chunksize=(4,), meta=np.ndarray>
- description :
- DEPTHS OF CENTERS OF SOIL LAYERS
- long_name :
- Depths of centers of soil layers
- units :
- m
Array Chunk Bytes 16 B 16 B Shape (4,) (4,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ZSNSO(time, snso_layers_stag, y, x)float32dask.array<chunksize=(144, 7, 175, 175), meta=np.ndarray>
- description :
- layer-bottom depth from snow surf
- grid_mapping :
- crs
- long_name :
- Layer-bottom depth from snow surface
- number_of_significant_digits :
- 5
- units :
- m
Array Chunk Bytes 13.32 TiB 117.76 MiB Shape (376945, 7, 1015, 1367) (144, 7, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ZWT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- water table depth
- grid_mapping :
- crs
- long_name :
- Water table depth
- number_of_significant_digits :
- 5
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - crs()int64...
- crs_wkt :
- PROJCRS["unknown",BASEGEOGCRS["unknown",DATUM["unknown",ELLIPSOID["unknown",6370000,0,LENGTHUNIT["metre",1,ID["EPSG",9001]]]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8901]]],CONVERSION["unknown",METHOD["Lambert Conic Conformal (2SP)",ID["EPSG",9802]],PARAMETER["Latitude of false origin",39.1000061035156,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8821]],PARAMETER["Longitude of false origin",-97.9000015258789,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8822]],PARAMETER["Latitude of 1st standard parallel",30,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8823]],PARAMETER["Latitude of 2nd standard parallel",50,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8824]],PARAMETER["Easting at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8826]],PARAMETER["Northing at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8827]]],CS[Cartesian,2],AXIS["(E)",east,ORDER[1],LENGTHUNIT["metre",1,ID["EPSG",9001]]],AXIS["(N)",north,ORDER[2],LENGTHUNIT["metre",1,ID["EPSG",9001]]]]
- false_easting :
- 0.0
- false_northing :
- 0.0
- geographic_crs_name :
- unknown
- grid_mapping_name :
- lambert_conformal_conic
- horizontal_datum_name :
- unknown
- inverse_flattening :
- 0.0
- latitude_of_projection_origin :
- 39.100006103515625
- longitude_of_central_meridian :
- -97.9000015258789
- longitude_of_prime_meridian :
- 0.0
- prime_meridian_name :
- Greenwich
- projected_crs_name :
- unknown
- reference_ellipsoid_name :
- unknown
- semi_major_axis :
- 6370000.0
- semi_minor_axis :
- 6370000.0
- standard_parallel :
- [30.0, 50.0]
[1 values with dtype=int64]
- timePandasIndex
PandasIndex(DatetimeIndex(['1979-10-01 00:00:00', '1979-10-01 01:00:00', '1979-10-01 02:00:00', '1979-10-01 03:00:00', '1979-10-01 04:00:00', '1979-10-01 05:00:00', '1979-10-01 06:00:00', '1979-10-01 07:00:00', '1979-10-01 08:00:00', '1979-10-01 09:00:00', ... '2022-09-30 15:00:00', '2022-09-30 16:00:00', '2022-09-30 17:00:00', '2022-09-30 18:00:00', '2022-09-30 19:00:00', '2022-09-30 20:00:00', '2022-09-30 21:00:00', '2022-09-30 22:00:00', '2022-09-30 23:00:00', '2022-10-01 00:00:00'], dtype='datetime64[ns]', name='time', length=376945, freq=None)) - xPandasIndex
PandasIndex(Index([-2732000.0, -2728000.0, -2724000.0, -2720000.0, -2716000.0, -2712000.0, -2708000.0, -2704000.0, -2700000.0, -2696000.0, ... 2696000.0, 2700000.0, 2704000.0, 2708000.0, 2712000.0, 2716000.0, 2720000.0, 2724000.0, 2728000.0, 2732000.0], dtype='float64', name='x', length=1367)) - yPandasIndex
PandasIndex(Index([-2027999.9999999958, -2023999.9999999958, -2019999.9999999958, -2015999.9999999958, -2011999.9999999958, -2007999.9999999958, -2003999.9999999958, -1999999.9999999958, -1995999.9999999958, -1991999.9999999958, ... 1992000.0000000042, 1996000.0000000042, 2000000.0000000042, 2004000.0000000042, 2008000.0000000042, 2012000.0000000042, 2016000.0000000042, 2020000.0000000042, 2024000.0000000042, 2028000.0000000042], dtype='float64', name='y', length=1015))
- AER_ANGEXP_OPT :
- 1
- AER_ANGEXP_VAL :
- 1.2999999523162842
- AER_AOD550_OPT :
- 1
- AER_AOD550_VAL :
- 0.11999999731779099
- AER_ASY_OPT :
- 1
- AER_ASY_VAL :
- 0.8999999761581421
- AER_OPT :
- 1
- AER_SSA_OPT :
- 1
- AER_SSA_VAL :
- 0.8500000238418579
- AER_TYPE :
- 1
- BLDT :
- 0.0
- BL_PBL_PHYSICS :
- 1
- BOTTOM-TOP_GRID_DIMENSION :
- 51
- BOTTOM-TOP_PATCH_END_STAG :
- 51
- BOTTOM-TOP_PATCH_END_UNSTAG :
- 50
- BOTTOM-TOP_PATCH_START_STAG :
- 1
- BOTTOM-TOP_PATCH_START_UNSTAG :
- 1
- BUCKET_J :
- 1000000000.0
- BUCKET_MM :
- 100.0
- CEN_LAT :
- 39.100006103515625
- CEN_LON :
- -97.89999389648438
- CUDT :
- 5.0
- CU_PHYSICS :
- 0
- Contacts :
- CHANGHAI LIU (chliu@ucar.edu), KYOKO IKEDA (kyoko@ucar.edu)
- DAMPCOEF :
- 0.20000000298023224
- DAMP_OPT :
- 3
- DFI_OPT :
- 0
- DIFF_6TH_FACTOR :
- 0.11999999731779099
- DIFF_6TH_OPT :
- 0
- DIFF_OPT :
- 2
- DT :
- 20.0
- DTRAMP_MIN :
- 60.0
- DVEG :
- 9
- DX :
- 4000.0
- DY :
- 4000.0
- Division :
- NCAR/RAL/HAP
- ETAC :
- 0.0
- FEEDBACK :
- 1
- FGDT :
- 2.0
- FileGenerated :
- 20210204
- GFDDA_END_H :
- 999999
- GFDDA_INTERVAL_M :
- 180
- GMT :
- 0.0
- GPH :
- 4.999999873689376e-05
- GRAV_SETTLING :
- 0
- GRIDTYPE :
- C
- GRID_FDDA :
- 2
- GRID_ID :
- 1
- GRID_SFDDA :
- 0
- GT :
- 4.999999873689376e-05
- GUV :
- 4.999999873689376e-05
- GWD_OPT :
- 0
- HYBRID_OPT :
- -1
- HYPSOMETRIC_OPT :
- 2
- ICLOUD :
- 1
- ICLOUD_CU :
- 0
- IF_RAMPING :
- 1
- ISFFLX :
- 1
- ISFTCFLX :
- 0
- ISHALLOW :
- 0
- ISICE :
- 15
- ISLAKE :
- 21
- ISOILWATER :
- 14
- ISURBAN :
- 13
- ISWATER :
- 17
- I_PARENT_START :
- 1
- JULDAY :
- 274
- JULYR :
- 1979
- J_PARENT_START :
- 1
- KHDIF :
- 0.0
- KM_OPT :
- 4
- KVDIF :
- 0.0
- MAP_PROJ :
- 1
- MAP_PROJ_CHAR :
- Lambert Conformal
- MFSHCONV :
- 0
- MMINLU :
- MODIFIED_IGBP_MODIS_NOAH
- MOAD_CEN_LAT :
- 39.100006103515625
- MOIST_ADV_OPT :
- 1
- MP_PHYSICS :
- 8
- NCO :
- netCDF Operators version 4.9.5 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
- NUM_LAND_CAT :
- 21
- OBS_NUDGE_OPT :
- 0
- OPT_ALB :
- 2
- OPT_BTR :
- 2
- OPT_CRS :
- 1
- OPT_FRZ :
- 1
- OPT_GLA :
- 1
- OPT_INF :
- 1
- OPT_RAD :
- 3
- OPT_RSF :
- 1
- OPT_RUN :
- 5
- OPT_SFC :
- 1
- OPT_SNF :
- 4
- OPT_STC :
- 3
- OPT_TBOT :
- 1
- PARENT_GRID_RATIO :
- 1
- PARENT_ID :
- 0
- POLE_LAT :
- 90.0
- POLE_LON :
- 0.0
- PREC_ACC_DT :
- 60.0
- Project :
- USGS CONUS404
- RADT :
- 5.0
- RA_LW_PHYSICS :
- 4
- RA_SW_PHYSICS :
- 4
- SCALAR_ADV_OPT :
- 1
- SCALAR_PBLMIX :
- 0
- SF_LAKE_PHYSICS :
- 0
- SF_OCEAN_PHYSICS :
- 0
- SF_SFCLAY_PHYSICS :
- 1
- SF_SURFACE_PHYSICS :
- 4
- SF_URBAN_PHYSICS :
- 0
- SGFDDA_END_H :
- 0
- SGFDDA_INTERVAL_M :
- 0
- SHCU_PHYSICS :
- 0
- SIMULATION_INITIALIZATION_TYPE :
- REAL-DATA CASE
- SIMULATION_START_DATE :
- 1979-10-01_00:00:00
- SKEBS_ON :
- 0
- SMOOTH_OPTION :
- 2
- SOUTH-NORTH_GRID_DIMENSION :
- 1016
- SOUTH-NORTH_PATCH_END_STAG :
- 1016
- SOUTH-NORTH_PATCH_END_UNSTAG :
- 1015
- SOUTH-NORTH_PATCH_START_STAG :
- 1
- SOUTH-NORTH_PATCH_START_UNSTAG :
- 1
- SPEC_BDY_FINAL_MU :
- 1
- SST_UPDATE :
- 1
- STAND_LON :
- -97.9000015258789
- START_DATE :
- 1979-10-01_00:00:00
- SURFACE_INPUT_SOURCE :
- 1
- SWINT_OPT :
- 0
- SWRAD_SCAT :
- 1.0
- Source_Code :
- make_conusii_2d.csh
- TITLE :
- OUTPUT FROM WRF V3.9.1.1 MODEL
- TKE_ADV_OPT :
- 1
- TOPO_WIND :
- 1
- TRACER_PBLMIX :
- 1
- TRUELAT1 :
- 30.0
- TRUELAT2 :
- 50.0
- USE_Q_DIABATIC :
- 0
- USE_THETA_M :
- 0
- WEST-EAST_GRID_DIMENSION :
- 1368
- WEST-EAST_PATCH_END_STAG :
- 1368
- WEST-EAST_PATCH_END_UNSTAG :
- 1367
- WEST-EAST_PATCH_START_STAG :
- 1
- WEST-EAST_PATCH_START_UNSTAG :
- 1
- W_DAMPING :
- 1
- YSU_TOPDOWN_PBLMIX :
- 0
- history :
- Tue Mar 29 16:35:22 2022: ncrcat -A -vW /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_W_d01_1979-10-01_00:00:00.nc /glade/scratch/kyoko/USGS/conus404_production_outputs/OUTPUT/WY1980/wrf2d_d01_1979-10-01_00:00:00 Tue Mar 29 16:35:21 2022: ncrcat -A -vZ /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_Z_d01_1979-10-01_00:00:00.nc /glade/scratch/kyoko/USGS/conus404_production_outputs/OUTPUT/WY1980/wrf2d_d01_1979-10-01_00:00:00
- history_of_appended_files :
- Tue Mar 29 16:35:22 2022: Appended file /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_W_d01_1979-10-01_00:00:00.nc had no "history" attribute Tue Mar 29 16:35:21 2022: Appended file /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_Z_d01_1979-10-01_00:00:00.nc had no "history" attribute
Option 2: Find and access a dataset using the PySTAC python library#
Before we begin, we will define a helper function that can be used to drill down through the STAC Catalog and extract key metadata.
def get_children(catalog, collection_id=None):
"""
This function retrieves a specified collection from a STAC catalog/collection and prints key metadata
for exploring/accessing the datasets contained within it.
If there is no collection ID provided, the collections in the top level of the catalog will be printed.
If a collection ID is provided, it will retrieve the collection with that ID from the input catalog/collection.
If the collection ID points to a dataset, it will print the assets available for the dataset.
If the collection ID points to another collection, it will list the child collections in the IDed collection.
Args:
catalog (pystac.Catalog | pystac.Collection): The STAC catalog/collection object.
collection_id (str): The ID of the collection or dataset to retrieve from catalog.
Returns:
collection (pystac.Catalog | pystac.Collection): The collection object corresponding to the provided ID
or the top-level catalog if no ID is provided.
"""
dataset = False
if collection_id:
collection = catalog.get_child(collection_id)
if collection.assets:
dataset = True
print(f"{collection_id} is a dataset. Please review the assets below and select one to open.")
else:
print(f"{collection_id} is a collection. Please review the child items and select one to open in the next cell.")
else:
collection = catalog
if dataset==True:
# List the assets
for asset in collection.assets:
print(f"Asset ID: {asset}")
print(f" Title: {collection.assets[asset].title}")
print(f" Description: {collection.assets[asset].description}")
else:
collections = list(collection.get_collections())
print(f"Number of collections: {len(collections)}")
print("Collections IDs:")
for child_collection in collections:
id = child_collection.id
cite_as = "Not available"
for link in child_collection.links:
if link.rel == "cite-as":
cite_as = link.target
print(f"- {id}, Source: {cite_as}")
return collection
Step 1: Explore the catalog using the PySTAC library and find the dataset you want to use.
The following code will read the WMA STAC Catalog and print the items in the top level of the catalog.
This catalog contains both datasets and collections of datasets in the top level of the catalog. Therefore, some collections may point to a dataset endpoint, while others will point to another collection of several datasets. As you drill down through the collections, you will eventually land on a dataset.
You can learn more about each dataset at its source publication point, which the helper function defined above prints out (if available).
Identify a dataset that you want to use. For this example, we will use the gridMET dataset.
Note: We are working on enabling stac-search to our pygeoapi endpoint, which will allow you to search for datasets using keywords and other metadata which will help facilitate this exploration process.
# url for the WMA STAC Catalog
catalog_url = "https://api.water.usgs.gov/gdp/pygeoapi/stac/stac-collection/"
# use pystac to read the catalog
catalog = pystac.Catalog.from_file(catalog_url)
# list the collections in the catalog
catalog = get_children(catalog)
Number of collections: 43
Collections IDs:
- AIEM_permafrost, Source: Not available
- CA-BCM-2014, Source: https://doi.org/10.21429/dye8-h568
- FLET, Source: Not available
- GMO, Source: https://doi.org/10.21429/v7ys-6n72
- GMO_New, Source: https://doi.org/10.21429/c6s4-ve70
- LOCA2, Source: Not available
- PRISM_v2, Source: https://prism.oregonstate.edu/
- PuertoRico, Source: Not available
- RedRiver, Source: Not available
- SPEI, Source: Not available
- TTU_2019, Source: Not available
- TopoWx2017, Source: Not available
- WUS_HSP, Source: Not available
- alaska_et_2020, Source: Not available
- bcca, Source: Not available
- bcsd_mon_vic, Source: http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
- bcsd_obs, Source: http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
- cmip5_bcsd, Source: https://doi.org/10.21429/sbxv-1n90
- conus404-pgw, Source: Not available
- conus404, Source: Not available
- cooper, Source: Not available
- cprep, Source: Not available
- dcp_compressed, Source: https://doi.org/https%3A//doi.org/10.21429/j9f1-b218
- gridMET, Source: https://www.climatologylab.org/gridmet.html
- hawaii_2018, Source: Not available
- iclus, Source: Not available
- loca, Source: Not available
- maca-vic, Source: Not available
- macav2, Source: Not available
- maurer, Source: https://doi.org/10.21429/m7y0-xy02
- mows, Source: Not available
- nc-casc-snow, Source: Not available
- nlcd, Source: Not available
- notaro_2018, Source: Not available
- pacis, Source: Not available
- puerto_rico, Source: Not available
- red_river_2018, Source: https://doi.org/10.21429/em59-hn43
- serap, Source: Not available
- slr2d, Source: https://doi.org/10.21429/66gt-dm26
- snodas, Source: https://doi.org/10.7265/N5TB14TC
- ssebopeta, Source: Not available
- stageiv_combined, Source: https://pubs.usgs.gov/fs/2013/3035/
- wicci, Source: https://doi.org/10.21429/dtp5-z505
# select a collection from the catalog, replace the collection ID with the one you want to use:
collection = get_children(catalog, collection_id="conus404")
conus404 is a collection. Please review the child items and select one to open in the next cell.
Number of collections: 4
Collections IDs:
- conus404_daily, Source: https://doi.org/10.5066/P9PHPK4F
- conus404_hourly, Source: https://doi.org/10.5066/P9PHPK4F
- conus404_monthly, Source: https://doi.org/10.5066/P9PHPK4F
- conus404_xtrm_daily, Source: https://doi.org/10.5066/P9PHPK4F
# if the above was a collection, uncomment the line below and enter the collection ID
# you want to use from the parent collection you selected:
collection = get_children(collection, collection_id="conus404_hourly")
conus404_hourly is a dataset. Please review the assets below and select one to open.
Asset ID: zarr-s3-osn
Title: Free access to zarr via S3 API
Description: Free, public access to zarr data store via the S3 API. This data is stored on an Open Storage Network Pod.
Asset ID: zarr-disk-hovenweep
Title: USGS internal access to zarr via Hovenweep
Description: USGS internal access to zarr data store via disk storage attached to the Hovenweep supercomputer.
Asset ID: default
Title: None
Description: None
Step 2: Identify which asset you want to use to access the dataset you’ve chosen.
Review the
TitleandDescriptionof each asset printed above. Each asset is a different copy of the dataset that may be stored in a different format or location.Typically, we recommend people use the
zarr-s3-osnasset unless they have a reason to use a different asset.Copy the Asset ID for the asset you have chosen, and paste in the code below to read the asset metadata.
# replace with the asset ID you want to use:
selected_asset_id = "zarr-s3-osn"
# read the asset metadata
asset = collection.assets[selected_asset_id]
Open the dataset using xarray#
Now we will open and view the dataset using xarray.
Please note that there are two major zarr format specifications: 2 and 3. If you are using the python package zarr>=3.0.0, you must specify the format of the zarr store you are trying to open in the xarray.open_dataset function. If you are using zarr<3.0.0, you do not need to specify the format, as it will default to version 2.
if Version(zarr.__version__) < Version("3.0.0"):
ds = xr.open_dataset(
asset.href,
storage_options=asset.extra_fields['xarray:storage_options'],
**asset.extra_fields['xarray:open_kwargs']
)
else:
ds = xr.open_dataset(
asset.href,
storage_options=asset.extra_fields['xarray:storage_options'],
**asset.extra_fields['xarray:open_kwargs'],
zarr_format=2
)
ds
<xarray.Dataset> Size: 222TB
Dimensions: (time: 376945, y: 1015, x: 1367, bottom_top_stag: 51,
bottom_top: 50, soil_layers_stag: 4, x_stag: 1368,
y_stag: 1016, snow_layers_stag: 3, snso_layers_stag: 7)
Coordinates:
lat (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
lat_u (y, x_stag) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
lat_v (y_stag, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
lon (y, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
lon_u (y, x_stag) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
lon_v (y_stag, x) float32 6MB dask.array<chunksize=(175, 175), meta=np.ndarray>
* time (time) datetime64[ns] 3MB 1979-10-01 ... 2022-10-01
* x (x) float64 11kB -2.732e+06 -2.728e+06 ... 2.732e+06
* y (y) float64 8kB -2.028e+06 -2.024e+06 ... 2.028e+06
Dimensions without coordinates: bottom_top_stag, bottom_top, soil_layers_stag,
x_stag, y_stag, snow_layers_stag,
snso_layers_stag
Data variables: (12/153)
ACDEWC (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
ACDRIPR (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
ACDRIPS (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
ACECAN (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
ACEDIR (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
ACETLSM (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
... ...
ZNU (bottom_top) float32 200B dask.array<chunksize=(50,), meta=np.ndarray>
ZNW (bottom_top_stag) float32 204B dask.array<chunksize=(51,), meta=np.ndarray>
ZS (soil_layers_stag) float32 16B dask.array<chunksize=(4,), meta=np.ndarray>
ZSNSO (time, snso_layers_stag, y, x) float32 15TB dask.array<chunksize=(144, 7, 175, 175), meta=np.ndarray>
ZWT (time, y, x) float32 2TB dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
crs int64 8B ...
Attributes: (12/148)
AER_ANGEXP_OPT: 1
AER_ANGEXP_VAL: 1.2999999523162842
AER_AOD550_OPT: 1
AER_AOD550_VAL: 0.11999999731779099
AER_ASY_OPT: 1
AER_ASY_VAL: 0.8999999761581421
... ...
WEST-EAST_PATCH_START_STAG: 1
WEST-EAST_PATCH_START_UNSTAG: 1
W_DAMPING: 1
YSU_TOPDOWN_PBLMIX: 0
history: Tue Mar 29 16:35:22 2022: ncrcat -A -vW ...
history_of_appended_files: Tue Mar 29 16:35:22 2022: Appended file ...- time: 376945
- y: 1015
- x: 1367
- bottom_top_stag: 51
- bottom_top: 50
- soil_layers_stag: 4
- x_stag: 1368
- y_stag: 1016
- snow_layers_stag: 3
- snso_layers_stag: 7
- lat(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - lat_u(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - lat_v(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LATITUDE, SOUTH IS NEGATIVE
- long_name :
- Latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - lon(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - lon_u(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - lon_v(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LONGITUDE, WEST IS NEGATIVE
- long_name :
- Longitude, west is negative
- units :
- degree_east
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - time(time)datetime64[ns]1979-10-01 ... 2022-10-01
- axis :
- T
- description :
- time
- long_name :
- time
- standard_name :
- time
array(['1979-10-01T00:00:00.000000000', '1979-10-01T01:00:00.000000000', '1979-10-01T02:00:00.000000000', ..., '2022-09-30T22:00:00.000000000', '2022-09-30T23:00:00.000000000', '2022-10-01T00:00:00.000000000'], shape=(376945,), dtype='datetime64[ns]') - x(x)float64-2.732e+06 -2.728e+06 ... 2.732e+06
- long_name :
- x coordinate of projection
- standard_name :
- projection_x_coordinate
- units :
- m
array([-2732000., -2728000., -2724000., ..., 2724000., 2728000., 2732000.], shape=(1367,)) - y(y)float64-2.028e+06 -2.024e+06 ... 2.028e+06
- long_name :
- y coordinate of projection
- standard_name :
- projection_y_coordinate
- units :
- m
array([-2028000., -2024000., -2020000., ..., 2020000., 2024000., 2028000.], shape=(1015,))
- ACDEWC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QDEWC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy dew rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACDRIPR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QDRIPR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy precipitation drip rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACDRIPS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QDRIPS
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow drip rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACECAN(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated ECAN
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated net evaporation of canopy water (evap + sublim - dew - frost)
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEDIR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated EDIR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated net soil evaporation or snowpack sublimation (evap or sublim - dew or frost)
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACETLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated ET
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated total evaporation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACETRAN(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated ETRAN
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated plant transpiration
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVAC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QEVAC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy evaporation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated EVB
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated latent heat flux over bare ground
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated EVC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated latent heat flux for canopy layer
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACEVG(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated EVG
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated ground latent heat flux below canopy
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACFROC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QFROC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy frost
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACFRZC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QFRZC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated refreezing of canopy liquid water
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACGHB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated GHB
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated heat flux into soil or snowpack for bare ground
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACGHFLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated total ground heat flux
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated total ground heat flux into soil or snowpack
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACGHV(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated GHV
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated heat flux into soil or snowpack under canopy
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACINTR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QINTR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy rain interception rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACINTS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QINTS
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow interception rate
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACLHFLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated total latent heat flux
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated total latent heat flux
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACLWDNB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED DOWNWELLING LONGWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated downwelling longwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACLWUPB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED UPWELLING LONGWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated upwelling longwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACMELTC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QMELTC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow melt
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACPONDING(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated PONDING
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated surface ponding from complete pack melt
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACQLAT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- accumulated lateral flow
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated groundwater lateral flow
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACQRF(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- accumulated baseflow
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated groundwater baseflow
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRAINLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated RAINLSM
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated liquid precipitation into land surface model
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRAINSNOW(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated rain on snow pack
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated rain on snow pack
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRUNSB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated RUNSB
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated subsurface runoff
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACRUNSF(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated RUNSF
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated surface runoff
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSHFLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated total sensible heat flux
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated total sensible heat flux
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNBOT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QSNBOT
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated liquid water flux out of bottom of snowpack
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNFRO(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QSNFRO
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated snowpack frost
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNOM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED MELTED SNOW
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated total liquid water out of the snowpack
- units :
- kg m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNOWLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated SNOWLSM
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated frozen precipitation into land surface model
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSNSUB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QSNSUB
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated snowpack sublimation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSUBC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QSUBC
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow sublimation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWDNB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED DOWNWELLING SHORTWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated downwelling shortwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWDNLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated SWDN
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated shortwave radiation down at land surface model
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWDNT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED DOWNWELLING SHORTWAVE FLUX AT TOP
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated downwelling shortwave radiation flux at top
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWUPB(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED UPWELLING SHORTWAVE FLUX AT BOTTOM
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated upwelling shortwave radiation flux at bottom
- units :
- J m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACSWUPLSM(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated SWUP
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated shortwave radiation up at land surface model
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACTHROR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QTHROR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy rain throughfall
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACTHROS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated QTHROS
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated canopy snow throughfall
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ACTR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- acccumlated TR
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated transpiration
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ALBEDO(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ALBEDO
- grid_mapping :
- crs
- long_name :
- Surface albedo including snow effects
- number_of_significant_digits :
- 5
- units :
- 1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - BF(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, bf=0 => isobaric; bf=znw => sigma
- long_name :
- Full levels, bf=0 => isobaric; bf=znw => sigma
- units :
- Dimensionless
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - BH(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, bh=0 => isobaric; bh=znu => sigma
- long_name :
- Half levels, bh=0 => isobaric; bh=znu => sigma
- units :
- Dimensionless
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C1F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c1f = d bf / d eta, using znu
- long_name :
- Full levels, c1f = d bf / d eta, using znu
- units :
- Dimensionless
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C1H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c1h = d bf / d eta, using znw
- long_name :
- Half levels, c1h = d bf / d eta, using znw
- units :
- Dimensionless
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C2F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c2f = (1-c1f)*(p0-pt)
- long_name :
- Full levels, c2f = (1-c1f)*(p0-pt)
- units :
- Pa
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C2H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c2h = (1-c1h)*(p0-pt)
- long_name :
- Half levels, c2h = (1-c1h)*(p0-pt)
- units :
- Pa
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C3F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c3f = bf
- long_name :
- Full levels, c3f = bf
- units :
- Dimensionless
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C3H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c3h = bh
- long_name :
- Half levels, c3h = bh
- units :
- Dimensionless
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C4F(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- full levels, c4f = (eta-bf)*(p0-pt)+pt, using znw
- long_name :
- Full levels, c4f = (eta-bf)*(p0-pt)+pt, using znw
- units :
- Pa
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - C4H(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- half levels, c4h = (eta-bh)*(p0-pt)+pt, using znu
- long_name :
- Half levels, c4h = (eta-bh)*(p0-pt)+pt, using znu
- units :
- Pa
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - CANWAT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- CANOPY WATER
- grid_mapping :
- crs
- long_name :
- Canopy intercepted water
- units :
- kg m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - CF1()float32...
- description :
- 2nd order extrapolation constant
- long_name :
- 2nd order extrapolation constant
- units :
[1 values with dtype=float32]
- CF2()float32...
- description :
- 2nd order extrapolation constant
- long_name :
- 2nd order extrapolation constant
- units :
[1 values with dtype=float32]
- CF3()float32...
- description :
- 2nd order extrapolation constant
- long_name :
- 2nd order extrapolation constant
- units :
[1 values with dtype=float32]
- CFN()float32...
- description :
- extrapolation constant
- long_name :
- Extrapolation constant
- units :
[1 values with dtype=float32]
- CFN1()float32...
- description :
- extrapolation constant
- long_name :
- Extrapolation constant
- units :
[1 values with dtype=float32]
- CLAT(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- COMPUTATIONAL GRID LATITUDE, SOUTH IS NEGATIVE
- grid_mapping :
- crs
- long_name :
- Computational grid latitude, south is negative
- units :
- degree_north
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - COSALPHA(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Local cosine of map rotation
- grid_mapping :
- crs
- long_name :
- Local cosine of map rotation
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - DN(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- d(eta) values between half (mass) levels
- long_name :
- D(eta) values between half (mass) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - DNW(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- d(eta) values between full (w) levels
- long_name :
- D(eta) values between full (w) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - DZS(soil_layers_stag)float32dask.array<chunksize=(4,), meta=np.ndarray>
- description :
- THICKNESSES OF SOIL LAYERS
- long_name :
- Thickness of soil layers
- units :
- m
Array Chunk Bytes 16 B 16 B Shape (4,) (4,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - E(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Coriolis cosine latitude term
- grid_mapping :
- crs
- long_name :
- Coriolis cosine latitude term
- units :
- s-1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - F(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Coriolis sine latitude term
- grid_mapping :
- crs
- long_name :
- Coriolis sine latitude term
- units :
- s-1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - FNM(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- upper weight for vertical stretching
- grid_mapping :
- crs
- long_name :
- Upper weight for vertical stretching
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - FNP(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- lower weight for vertical stretching
- long_name :
- Lower weight for vertical stretching
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - GRAUPEL_ACC_NC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED GRAUPEL WATER EQUIVALENT OVER prec_acc_dt PERIODS OF TIME
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated graupel water equivalent
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Terrain Height
- grid_mapping :
- crs
- long_name :
- Terrain Height
- units :
- m
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - ISLTYP(y, x)int32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- DOMINANT SOIL CATEGORY
- flag_meanings :
- sand loamy_sand sand_loam silt_loam silt loam sandy_clay_loam silty_clay_loam clay_loam sandy_clay silty_clay clay organic_material water bedrock other_land-ice
- flag_values :
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- grid_mapping :
- crs
- long_name :
- Dominant soil category
- units :
- valid_range :
- 1, 16
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type int32 numpy.ndarray - IVGTYP(y, x)int32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- DOMINANT VEGETATION CATEGORY
- flag_meanings :
- evergreen_needleleaf_forest evergreen_broadleaf_forest deciduous_needleleaf_forest deciduous_broadleaf_forest mixed_forests closed_shrublands open_shrublands woody_savannas savannas grasslands permanent_wetlands croplands urban_and_built-up cropland-natural_vegetation_mosaic snow_and_ice barren_or_sparsely_vegetated water wooded_tundra mixed_tundra barren_tundra
- flag_values :
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- grid_mapping :
- crs
- long_name :
- Dominant vegetation category
- units :
- valid_range :
- 1, 20
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type int32 numpy.ndarray - LAKEMASK(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LAKE MASK (1 FOR LAKE, 0 FOR NON-LAKE)
- flag_meanings :
- non-lake lake
- flag_values :
- 0.0, 1.0
- grid_mapping :
- crs
- long_name :
- Lake mask (1 for lake, 0 for non-lake)
- units :
- valid_range :
- 0.0, 1.0
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - LANDMASK(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LAND MASK (1 FOR LAND, 0 FOR WATER)
- flag_meanings :
- water land
- flag_values :
- 0.0, 1.0
- grid_mapping :
- crs
- long_name :
- Land mask (1 for land, 0 for water)
- units :
- valid_range :
- 0.0, 1.0
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - LU_INDEX(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LAND USE CATEGORY
- flag_meanings :
- evergreen_needleleaf_forest evergreen_broadleaf_forest deciduous_needleleaf_forest deciduous_broadleaf_forest mixed_forests closed_shrublands open_shrublands woody_savannas savannas grasslands permanent_wetlands croplands urban_and_built-up cropland-natural_vegetation_mosaic snow_and_ice barren_or_sparsely_vegetated water wooded_tundra mixed_tundra barren_tundra
- flag_values :
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- grid_mapping :
- crs
- long_name :
- Land use category
- units :
- valid_range :
- 1, 20
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_M(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on mass grid
- grid_mapping :
- crs
- long_name :
- Map scale factor on mass grid
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_MX(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on mass grid, x direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on mass grid, x direction
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_MY(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on mass grid, y direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on mass grid, y direction
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_U(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on u-grid
- grid_mapping :
- crs
- long_name :
- Map scale factor on u-grid
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_UX(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on u-grid, x direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on u-grid, x direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_UY(y, x_stag)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on u-grid, y direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on u-grid, y direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1015, 1368) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_V(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on v-grid
- grid_mapping :
- crs
- long_name :
- Map scale factor on v-grid
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_VX(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on v-grid, x direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on v-grid, x direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAPFAC_VY(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Map scale factor on v-grid, y direction
- grid_mapping :
- crs
- long_name :
- Map scale factor on v-grid, y direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MAX_MSTFX()float32...
- description :
- Max map factor in domain
- long_name :
- Maximum map factor in domain
- units :
[1 values with dtype=float32]
- MAX_MSTFY()float32...
- description :
- Max map factor in domain
- long_name :
- Maximum map factor in domain
- units :
[1 values with dtype=float32]
- MF_VX_INV(y_stag, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Inverse map scale factor on v-grid, x direction
- grid_mapping :
- crs
- long_name :
- Inverse map scale factor on v-grid, x direction
- units :
Array Chunk Bytes 5.30 MiB 119.63 kiB Shape (1016, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - MLCAPE(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- MIXED-LAYER CAPE
- grid_mapping :
- crs
- long_name :
- Mixed-layer convective available potential energy (CAPE)
- units :
- J kg-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - MUB(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- base state dry air mass in column
- grid_mapping :
- crs
- long_name :
- Base state dry air mass in column
- units :
- Pa
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - P00()float32...
- description :
- BASE STATE PRESURE
- long_name :
- Base state pressure
- units :
- Pa
[1 values with dtype=float32]
- PB(bottom_top, y, x)float32dask.array<chunksize=(50, 175, 175), meta=np.ndarray>
- description :
- BASE STATE PRESSURE
- grid_mapping :
- crs
- long_name :
- Base state pressure
- units :
- Pa
Array Chunk Bytes 264.65 MiB 5.84 MiB Shape (50, 1015, 1367) (50, 175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - PBLH(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- PBL HEIGHT
- grid_mapping :
- crs
- long_name :
- Planetary boundary layer height
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - PHB(bottom_top_stag, y, x)float32dask.array<chunksize=(51, 175, 175), meta=np.ndarray>
- description :
- base-state geopotential
- grid_mapping :
- crs
- long_name :
- Base-state geopotential
- units :
- m2 s-2
Array Chunk Bytes 269.94 MiB 5.96 MiB Shape (51, 1015, 1367) (51, 175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - PREC_ACC_NC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED GRID SCALE PRECIPITATION OVER prec_acc_dt PERIODS OF TIME
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated grid scale precipitation
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - PSFC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- SFC PRESSURE
- grid_mapping :
- crs
- long_name :
- Surface pressure
- units :
- Pa
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - PWAT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- Precipitable Water
- units :
- meters
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - P_STRAT()float32...
- description :
- BASE STATE PRESSURE AT BOTTOM OF STRATOSPHERE
- long_name :
- Base state pressure at bottom of stratosphere
- units :
- Pa
[1 values with dtype=float32]
- P_TOP()float32...
- description :
- PRESSURE TOP OF THE MODEL
- long_name :
- Pressure top of the model
- units :
- Pa
[1 values with dtype=float32]
- Q2(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- QV at 2 M
- grid_mapping :
- crs
- long_name :
- Water vapor mixing ratio at 2 meters
- units :
- kg kg-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - QRFS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- sum baseflow
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated baseflow
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - QSLAT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- sum lateral flow
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated groundwater lateral flow
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - QSPRINGS(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- sum seeping water
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated seeping water
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - QVAPOR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- Water vapor mixing ratio
- grid_mapping :
- crs
- long_name :
- Water vapor mixing ratio
- units :
- kg kg-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - RDN(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- inverse d(eta) values between half (mass) levels
- long_name :
- Inverse d(eta) values between half (mass) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - RDNW(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- inverse d(eta) values between full (w) levels
- long_name :
- Inverse d(eta) values between full (w) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - RDX()float32...
- description :
- INVERSE X GRID LENGTH
- long_name :
- Inverse X grid length
- units :
- m-1
[1 values with dtype=float32]
- RDY()float32...
- description :
- INVERSE Y GRID LENGTH
- long_name :
- Inverse Y grid length
- units :
- m-1
[1 values with dtype=float32]
- RECH(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- sum water table recharge
- grid_mapping :
- crs
- integration_length :
- accumulated since 1979-10-01 00:00:00
- long_name :
- Accumulated water table recharge
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SH2O(time, soil_layers_stag, y, x)float32dask.array<chunksize=(144, 4, 175, 175), meta=np.ndarray>
- description :
- SOIL LIQUID WATER
- grid_mapping :
- crs
- long_name :
- Soil liquid water
- number_of_significant_digits :
- 5
- units :
- m3 m-3
Array Chunk Bytes 7.61 TiB 67.29 MiB Shape (376945, 4, 1015, 1367) (144, 4, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SHDMAX(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- ANNUAL MAX VEG FRACTION
- grid_mapping :
- crs
- long_name :
- Annual maximum vegetation fraction
- units :
- 1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - SHDMIN(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- ANNUAL MIN VEG FRACTION
- grid_mapping :
- crs
- long_name :
- Annual minimum vegetation fraction
- units :
- 1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - SINALPHA(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- Local sine of map rotation
- grid_mapping :
- crs
- long_name :
- Local sine of map rotation
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - SMCWTD(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- deep soil moisture
- grid_mapping :
- crs
- long_name :
- Deep soil moisture
- units :
- m3 m-3
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SMOIS(time, soil_layers_stag, y, x)float32dask.array<chunksize=(144, 4, 175, 175), meta=np.ndarray>
- description :
- SOIL MOISTURE
- grid_mapping :
- crs
- long_name :
- Soil moisture
- number_of_significant_digits :
- 5
- units :
- m3 m-3
Array Chunk Bytes 7.61 TiB 67.29 MiB Shape (376945, 4, 1015, 1367) (144, 4, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNICE(time, snow_layers_stag, y, x)float32dask.array<chunksize=(144, 3, 175, 175), meta=np.ndarray>
- description :
- snow layer ice
- grid_mapping :
- crs
- long_name :
- Snow layer ice
- units :
- mm
Array Chunk Bytes 5.71 TiB 50.47 MiB Shape (376945, 3, 1015, 1367) (144, 3, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNLIQ(time, snow_layers_stag, y, x)float32dask.array<chunksize=(144, 3, 175, 175), meta=np.ndarray>
- description :
- snow layer liquid
- grid_mapping :
- crs
- long_name :
- Snow layer liquid
- units :
- mm
Array Chunk Bytes 5.71 TiB 50.47 MiB Shape (376945, 3, 1015, 1367) (144, 3, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOALB(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- ANNUAL MAX SNOW ALBEDO IN FRACTION
- grid_mapping :
- crs
- long_name :
- Annual maximum snow albedo in fraction
- units :
- 1
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOW(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- SNOW WATER EQUIVALENT
- grid_mapping :
- crs
- long_name :
- Snow water equivalent
- units :
- kg m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOWC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- FLAG INDICATING SNOW COVERAGE (1 FOR SNOW COVER)
- grid_mapping :
- crs
- long_name :
- Snow cover fraction
- number_of_significant_digits :
- 5
- units :
- valid_range :
- 0.0, 1.0
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOWENERGY(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- energy content in snow relative to 273.16
- grid_mapping :
- crs
- long_name :
- Energy content in snow relative to 273.16 K
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOWH(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- PHYSICAL SNOW DEPTH
- grid_mapping :
- crs
- long_name :
- Physical snow depth
- number_of_significant_digits :
- 5
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOW_ACC_NC(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- ACCUMULATED SNOW WATER EQUIVALENT OVER prec_acc_dt PERIODS OF TIME
- grid_mapping :
- crs
- integration_length :
- accumulated over prior 60 minutes
- long_name :
- Accumulated snow water equivalent
- units :
- mm
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SOILENERGY(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- energy content in soil relative to 273.16
- grid_mapping :
- crs
- long_name :
- Energy content in soil relative to 273.16 K
- units :
- kJ m-2
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - SR(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- fraction of frozen precipitation
- grid_mapping :
- crs
- long_name :
- Fraction of frozen precipitation
- number_of_significant_digits :
- 5
- units :
- 1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - T00()float32...
- description :
- BASE STATE TEMPERATURE
- long_name :
- Base state temperature
- units :
- K
[1 values with dtype=float32]
- T2(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- TEMP at 2 M
- grid_mapping :
- crs
- long_name :
- Temperature at 2 meters
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TD2(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- 2-m dewpoint temperature
- grid_mapping :
- crs
- long_name :
- Dewpoint temperature at 2 meters
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TISO()float32...
- description :
- TEMP AT WHICH THE BASE T TURNS CONST
- long_name :
- Temperature at which the base perturbation potential temperature turns constant
- units :
- K
[1 values with dtype=float32]
- TK(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- Air temperature at the lowest model level
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TLP()float32...
- description :
- BASE STATE LAPSE RATE
- long_name :
- Base state lapse rate
- units :
[1 values with dtype=float32]
- TLP_STRAT()float32...
- description :
- BASE STATE LAPSE RATE (DT/D(LN(P)) IN STRATOSPHERE
- long_name :
- Base state lapse rate (DT/D(LN(P)) in stratosphere
- units :
- K
[1 values with dtype=float32]
- TRAD(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- surface radiative temperature
- grid_mapping :
- crs
- long_name :
- Surface radiative temperature
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TSK(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- SURFACE SKIN TEMPERATURE
- grid_mapping :
- crs
- long_name :
- Surface skin temperature
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TSLB(time, soil_layers_stag, y, x)float32dask.array<chunksize=(144, 4, 175, 175), meta=np.ndarray>
- description :
- SOIL TEMPERATURE
- grid_mapping :
- crs
- long_name :
- Soil temperature
- number_of_significant_digits :
- 5
- units :
- K
Array Chunk Bytes 7.61 TiB 67.29 MiB Shape (376945, 4, 1015, 1367) (144, 4, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TSNO(time, snow_layers_stag, y, x)float32dask.array<chunksize=(144, 3, 175, 175), meta=np.ndarray>
- description :
- snow temperature
- grid_mapping :
- crs
- long_name :
- Snow temperature
- number_of_significant_digits :
- 5
- units :
- K
Array Chunk Bytes 5.71 TiB 50.47 MiB Shape (376945, 3, 1015, 1367) (144, 3, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - TV(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- vegetation leaf temperature
- grid_mapping :
- crs
- long_name :
- Vegetation leaf temperature
- number_of_significant_digits :
- 5
- units :
- K
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - U(time, y, x_stag)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- x-wind component
- grid_mapping :
- crs
- long_name :
- U-component of wind with respect to model grid
- units :
- m s-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1368) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - U10(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- U at 10 M
- grid_mapping :
- crs
- long_name :
- U-component of wind at 10 meters with respect to model grid
- units :
- m s-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - V(time, y_stag, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- y-wind component
- grid_mapping :
- crs
- long_name :
- V-component of wind with respect to model grid
- units :
- m s-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1016, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - V10(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- V at 10 M
- grid_mapping :
- crs
- long_name :
- V-component of wind at 10 meters with respect to model grid
- units :
- m s-1
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - VAR(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- OROGRAPHIC VARIANCE
- grid_mapping :
- crs
- long_name :
- Orographic variance
- units :
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - VAR_SSO(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- variance of subgrid-scale orography
- grid_mapping :
- crs
- long_name :
- Variance of subgrid-scale orography
- units :
- m2
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - XLAND(y, x)float32dask.array<chunksize=(175, 175), meta=np.ndarray>
- description :
- LAND MASK (1 FOR LAND, 2 FOR WATER)
- flag_meanings :
- land water
- flag_values :
- 1, 2
- grid_mapping :
- crs
- long_name :
- Land mask (1 for land, 2 for water)
- units :
- valid_range :
- 1.0, 2.0
Array Chunk Bytes 5.29 MiB 119.63 kiB Shape (1015, 1367) (175, 175) Dask graph 48 chunks in 2 graph layers Data type float32 numpy.ndarray - Z(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- Geopotential Height at the lowest model level (PH+PHB)/9.81
- units :
- meters MSL
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ZETATOP()float32...
- description :
- ZETA AT MODEL TOP
- long_name :
- ZETA at model top
- units :
[1 values with dtype=float32]
- ZNU(bottom_top)float32dask.array<chunksize=(50,), meta=np.ndarray>
- description :
- eta values on half (mass) levels
- long_name :
- Eta values on half (mass) levels
- units :
Array Chunk Bytes 200 B 200 B Shape (50,) (50,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ZNW(bottom_top_stag)float32dask.array<chunksize=(51,), meta=np.ndarray>
- description :
- eta values on full (w) levels
- long_name :
- Eta values on full (w) levels
- units :
Array Chunk Bytes 204 B 204 B Shape (51,) (51,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ZS(soil_layers_stag)float32dask.array<chunksize=(4,), meta=np.ndarray>
- description :
- DEPTHS OF CENTERS OF SOIL LAYERS
- long_name :
- Depths of centers of soil layers
- units :
- m
Array Chunk Bytes 16 B 16 B Shape (4,) (4,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - ZSNSO(time, snso_layers_stag, y, x)float32dask.array<chunksize=(144, 7, 175, 175), meta=np.ndarray>
- description :
- layer-bottom depth from snow surf
- grid_mapping :
- crs
- long_name :
- Layer-bottom depth from snow surface
- number_of_significant_digits :
- 5
- units :
- m
Array Chunk Bytes 13.32 TiB 117.76 MiB Shape (376945, 7, 1015, 1367) (144, 7, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - ZWT(time, y, x)float32dask.array<chunksize=(144, 175, 175), meta=np.ndarray>
- description :
- water table depth
- grid_mapping :
- crs
- long_name :
- Water table depth
- number_of_significant_digits :
- 5
- units :
- m
Array Chunk Bytes 1.90 TiB 16.82 MiB Shape (376945, 1015, 1367) (144, 175, 175) Dask graph 125664 chunks in 2 graph layers Data type float32 numpy.ndarray - crs()int64...
- crs_wkt :
- PROJCRS["unknown",BASEGEOGCRS["unknown",DATUM["unknown",ELLIPSOID["unknown",6370000,0,LENGTHUNIT["metre",1,ID["EPSG",9001]]]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8901]]],CONVERSION["unknown",METHOD["Lambert Conic Conformal (2SP)",ID["EPSG",9802]],PARAMETER["Latitude of false origin",39.1000061035156,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8821]],PARAMETER["Longitude of false origin",-97.9000015258789,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8822]],PARAMETER["Latitude of 1st standard parallel",30,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8823]],PARAMETER["Latitude of 2nd standard parallel",50,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8824]],PARAMETER["Easting at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8826]],PARAMETER["Northing at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8827]]],CS[Cartesian,2],AXIS["(E)",east,ORDER[1],LENGTHUNIT["metre",1,ID["EPSG",9001]]],AXIS["(N)",north,ORDER[2],LENGTHUNIT["metre",1,ID["EPSG",9001]]]]
- false_easting :
- 0.0
- false_northing :
- 0.0
- geographic_crs_name :
- unknown
- grid_mapping_name :
- lambert_conformal_conic
- horizontal_datum_name :
- unknown
- inverse_flattening :
- 0.0
- latitude_of_projection_origin :
- 39.100006103515625
- longitude_of_central_meridian :
- -97.9000015258789
- longitude_of_prime_meridian :
- 0.0
- prime_meridian_name :
- Greenwich
- projected_crs_name :
- unknown
- reference_ellipsoid_name :
- unknown
- semi_major_axis :
- 6370000.0
- semi_minor_axis :
- 6370000.0
- standard_parallel :
- [30.0, 50.0]
[1 values with dtype=int64]
- timePandasIndex
PandasIndex(DatetimeIndex(['1979-10-01 00:00:00', '1979-10-01 01:00:00', '1979-10-01 02:00:00', '1979-10-01 03:00:00', '1979-10-01 04:00:00', '1979-10-01 05:00:00', '1979-10-01 06:00:00', '1979-10-01 07:00:00', '1979-10-01 08:00:00', '1979-10-01 09:00:00', ... '2022-09-30 15:00:00', '2022-09-30 16:00:00', '2022-09-30 17:00:00', '2022-09-30 18:00:00', '2022-09-30 19:00:00', '2022-09-30 20:00:00', '2022-09-30 21:00:00', '2022-09-30 22:00:00', '2022-09-30 23:00:00', '2022-10-01 00:00:00'], dtype='datetime64[ns]', name='time', length=376945, freq=None)) - xPandasIndex
PandasIndex(Index([-2732000.0, -2728000.0, -2724000.0, -2720000.0, -2716000.0, -2712000.0, -2708000.0, -2704000.0, -2700000.0, -2696000.0, ... 2696000.0, 2700000.0, 2704000.0, 2708000.0, 2712000.0, 2716000.0, 2720000.0, 2724000.0, 2728000.0, 2732000.0], dtype='float64', name='x', length=1367)) - yPandasIndex
PandasIndex(Index([-2027999.9999999958, -2023999.9999999958, -2019999.9999999958, -2015999.9999999958, -2011999.9999999958, -2007999.9999999958, -2003999.9999999958, -1999999.9999999958, -1995999.9999999958, -1991999.9999999958, ... 1992000.0000000042, 1996000.0000000042, 2000000.0000000042, 2004000.0000000042, 2008000.0000000042, 2012000.0000000042, 2016000.0000000042, 2020000.0000000042, 2024000.0000000042, 2028000.0000000042], dtype='float64', name='y', length=1015))
- AER_ANGEXP_OPT :
- 1
- AER_ANGEXP_VAL :
- 1.2999999523162842
- AER_AOD550_OPT :
- 1
- AER_AOD550_VAL :
- 0.11999999731779099
- AER_ASY_OPT :
- 1
- AER_ASY_VAL :
- 0.8999999761581421
- AER_OPT :
- 1
- AER_SSA_OPT :
- 1
- AER_SSA_VAL :
- 0.8500000238418579
- AER_TYPE :
- 1
- BLDT :
- 0.0
- BL_PBL_PHYSICS :
- 1
- BOTTOM-TOP_GRID_DIMENSION :
- 51
- BOTTOM-TOP_PATCH_END_STAG :
- 51
- BOTTOM-TOP_PATCH_END_UNSTAG :
- 50
- BOTTOM-TOP_PATCH_START_STAG :
- 1
- BOTTOM-TOP_PATCH_START_UNSTAG :
- 1
- BUCKET_J :
- 1000000000.0
- BUCKET_MM :
- 100.0
- CEN_LAT :
- 39.100006103515625
- CEN_LON :
- -97.89999389648438
- CUDT :
- 5.0
- CU_PHYSICS :
- 0
- Contacts :
- CHANGHAI LIU (chliu@ucar.edu), KYOKO IKEDA (kyoko@ucar.edu)
- DAMPCOEF :
- 0.20000000298023224
- DAMP_OPT :
- 3
- DFI_OPT :
- 0
- DIFF_6TH_FACTOR :
- 0.11999999731779099
- DIFF_6TH_OPT :
- 0
- DIFF_OPT :
- 2
- DT :
- 20.0
- DTRAMP_MIN :
- 60.0
- DVEG :
- 9
- DX :
- 4000.0
- DY :
- 4000.0
- Division :
- NCAR/RAL/HAP
- ETAC :
- 0.0
- FEEDBACK :
- 1
- FGDT :
- 2.0
- FileGenerated :
- 20210204
- GFDDA_END_H :
- 999999
- GFDDA_INTERVAL_M :
- 180
- GMT :
- 0.0
- GPH :
- 4.999999873689376e-05
- GRAV_SETTLING :
- 0
- GRIDTYPE :
- C
- GRID_FDDA :
- 2
- GRID_ID :
- 1
- GRID_SFDDA :
- 0
- GT :
- 4.999999873689376e-05
- GUV :
- 4.999999873689376e-05
- GWD_OPT :
- 0
- HYBRID_OPT :
- -1
- HYPSOMETRIC_OPT :
- 2
- ICLOUD :
- 1
- ICLOUD_CU :
- 0
- IF_RAMPING :
- 1
- ISFFLX :
- 1
- ISFTCFLX :
- 0
- ISHALLOW :
- 0
- ISICE :
- 15
- ISLAKE :
- 21
- ISOILWATER :
- 14
- ISURBAN :
- 13
- ISWATER :
- 17
- I_PARENT_START :
- 1
- JULDAY :
- 274
- JULYR :
- 1979
- J_PARENT_START :
- 1
- KHDIF :
- 0.0
- KM_OPT :
- 4
- KVDIF :
- 0.0
- MAP_PROJ :
- 1
- MAP_PROJ_CHAR :
- Lambert Conformal
- MFSHCONV :
- 0
- MMINLU :
- MODIFIED_IGBP_MODIS_NOAH
- MOAD_CEN_LAT :
- 39.100006103515625
- MOIST_ADV_OPT :
- 1
- MP_PHYSICS :
- 8
- NCO :
- netCDF Operators version 4.9.5 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
- NUM_LAND_CAT :
- 21
- OBS_NUDGE_OPT :
- 0
- OPT_ALB :
- 2
- OPT_BTR :
- 2
- OPT_CRS :
- 1
- OPT_FRZ :
- 1
- OPT_GLA :
- 1
- OPT_INF :
- 1
- OPT_RAD :
- 3
- OPT_RSF :
- 1
- OPT_RUN :
- 5
- OPT_SFC :
- 1
- OPT_SNF :
- 4
- OPT_STC :
- 3
- OPT_TBOT :
- 1
- PARENT_GRID_RATIO :
- 1
- PARENT_ID :
- 0
- POLE_LAT :
- 90.0
- POLE_LON :
- 0.0
- PREC_ACC_DT :
- 60.0
- Project :
- USGS CONUS404
- RADT :
- 5.0
- RA_LW_PHYSICS :
- 4
- RA_SW_PHYSICS :
- 4
- SCALAR_ADV_OPT :
- 1
- SCALAR_PBLMIX :
- 0
- SF_LAKE_PHYSICS :
- 0
- SF_OCEAN_PHYSICS :
- 0
- SF_SFCLAY_PHYSICS :
- 1
- SF_SURFACE_PHYSICS :
- 4
- SF_URBAN_PHYSICS :
- 0
- SGFDDA_END_H :
- 0
- SGFDDA_INTERVAL_M :
- 0
- SHCU_PHYSICS :
- 0
- SIMULATION_INITIALIZATION_TYPE :
- REAL-DATA CASE
- SIMULATION_START_DATE :
- 1979-10-01_00:00:00
- SKEBS_ON :
- 0
- SMOOTH_OPTION :
- 2
- SOUTH-NORTH_GRID_DIMENSION :
- 1016
- SOUTH-NORTH_PATCH_END_STAG :
- 1016
- SOUTH-NORTH_PATCH_END_UNSTAG :
- 1015
- SOUTH-NORTH_PATCH_START_STAG :
- 1
- SOUTH-NORTH_PATCH_START_UNSTAG :
- 1
- SPEC_BDY_FINAL_MU :
- 1
- SST_UPDATE :
- 1
- STAND_LON :
- -97.9000015258789
- START_DATE :
- 1979-10-01_00:00:00
- SURFACE_INPUT_SOURCE :
- 1
- SWINT_OPT :
- 0
- SWRAD_SCAT :
- 1.0
- Source_Code :
- make_conusii_2d.csh
- TITLE :
- OUTPUT FROM WRF V3.9.1.1 MODEL
- TKE_ADV_OPT :
- 1
- TOPO_WIND :
- 1
- TRACER_PBLMIX :
- 1
- TRUELAT1 :
- 30.0
- TRUELAT2 :
- 50.0
- USE_Q_DIABATIC :
- 0
- USE_THETA_M :
- 0
- WEST-EAST_GRID_DIMENSION :
- 1368
- WEST-EAST_PATCH_END_STAG :
- 1368
- WEST-EAST_PATCH_END_UNSTAG :
- 1367
- WEST-EAST_PATCH_START_STAG :
- 1
- WEST-EAST_PATCH_START_UNSTAG :
- 1
- W_DAMPING :
- 1
- YSU_TOPDOWN_PBLMIX :
- 0
- history :
- Tue Mar 29 16:35:22 2022: ncrcat -A -vW /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_W_d01_1979-10-01_00:00:00.nc /glade/scratch/kyoko/USGS/conus404_production_outputs/OUTPUT/WY1980/wrf2d_d01_1979-10-01_00:00:00 Tue Mar 29 16:35:21 2022: ncrcat -A -vZ /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_Z_d01_1979-10-01_00:00:00.nc /glade/scratch/kyoko/USGS/conus404_production_outputs/OUTPUT/WY1980/wrf2d_d01_1979-10-01_00:00:00
- history_of_appended_files :
- Tue Mar 29 16:35:22 2022: Appended file /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_W_d01_1979-10-01_00:00:00.nc had no "history" attribute Tue Mar 29 16:35:21 2022: Appended file /glade/scratch/kyoko/USGS/conus404_production_outputs/GHT/WY1980/CONUS404_Z_d01_1979-10-01_00:00:00.nc had no "history" attribute
You can use whichever of the two methods described above to find and access datasets from our STAC Catalog. Now that you have the dataset open in xarray, you can build on the workflow to visualize, analyze, or do any other data processing you might need to do. You don’t need to download your own copy of the dataset - you can perform your analysis directly on the dataset from the source we provide. If your workflow exceeds your computer’s memory, you can use the dask library to parallelize your analysis and take advantage of HPC or scalable cloud computing resources.
Reporting Issues with the Catalog#
If you find any issues with our STAC catalog or the datasets it contains, please reach out to us in one of the following ways:
If you have a
code.usgs.govaccount, you can open an issueE-mail us at
mdmf@usgs.gov
We will do our best to address any issues you find in a timely manner.
Contributing to the Catalog#
We are very interested in expanding the datasets available in our STAC Catalog to include more datasets that are relevant to water modeling. If you have a dataset that you think should be included, we would love to hear from you! We are particularly interested in datasets that are very large or difficult to access. Please open an issue if you think you have a dataset that should be included in the catalog and tell us a bit about the dataset, who is using it, and why you would like to add it to our STAC Catalog.